AlwaysDifferent.js 84 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500
  1. var loadGeoJson = {};
  2. var element;
  3. var table;
  4. var slider;
  5. var dom = document.getElementById("container");
  6. var myChart = echarts.init(dom);
  7. var option;
  8. var myCharts = {};
  9. var myTables = {};
  10. myChart.showLoading();
  11. var msurl = './json/市级_山西.json';
  12. var qxurl = './json/县级_山西.json';
  13. var namefield = "name";
  14. var valuefield = "Shape_Area";
  15. var codefield = "CODE";
  16. var statisticsInfoByXZQ;
  17. var xzqSlider;
  18. var resertEchartsParams = {};
  19. var objList = []
  20. var levelName = ['优等地', '高等地', '中等地', '低等地']
  21. var levelColor = ['rgb(77,179,0)', 'rgb(187,230,0)', 'rgb(237,213,0)', 'rgb(199,139,0)']
  22. var XZQDMName = null
  23. var mapYears = null
  24. var mapYearsType = true
  25. var qixianName = null
  26. var curYear = null
  27. var mapYearsType1 = true
  28. var analysisList = []
  29. var targetType = false
  30. var analysisListShi = null
  31. var analysisListXdata = null
  32. var analysisListXian = null
  33. var analysisListQdata = null
  34. var analysisListQian = null
  35. var analysisListQX = [] // 存储县级数据
  36. var analysisListType = false // 点击县级的状态
  37. var configInfo = InitialParameter("/Config.json");
  38. globleUrl = configInfo["modelOrigin"].type + "://" + configInfo["modelOrigin"].value;
  39. $(".loading").css("line-height", $(".loading").height() + "px");
  40. window.onload = function () {
  41. setTimeout(function () {
  42. layui.use(['form', 'layer', 'element', 'slider', 'table'], function () {
  43. element = layui.element;
  44. table = layui.table;
  45. slider = layui.slider;
  46. init();
  47. timeLine()
  48. });
  49. $(".xzqBtn").click(function (e) {
  50. onTabClick(e);
  51. });
  52. }, 5);
  53. }
  54. // 封装的jquery的get方法
  55. function InitialParameter(url) {
  56. var info = null;
  57. $.ajax({
  58. async: false,
  59. url: url,
  60. success: function(result) {
  61. info = result;
  62. },
  63. error: function(result) {
  64. console.log(result);
  65. // info = JSON.parse(Base64.decode(result.responseText));
  66. }
  67. });
  68. return info;
  69. }
  70. // 封装的ajax请求
  71. function getGeoJson(url) {
  72. $.ajaxSettings.async = false;
  73. var geojson = null;
  74. $.get(url, function (results) {
  75. geojson = results;
  76. });
  77. return geojson;
  78. }
  79. // 行政区划数据
  80. function getXZQData() {
  81. return {
  82. "2010": {
  83. "140100": "1374.0827",
  84. "140121": "303.4894",
  85. "140122": "202.2398",
  86. "140123": "77.4958",
  87. "140124": "36.6520",
  88. "140125": "93.4583",
  89. "140200": "1755.7348",
  90. "140205": "92.2838",
  91. "140206": "33.9922",
  92. "140221": "526.4236",
  93. "140222": "220.4025",
  94. "140223": "723.9749",
  95. "140300": "126.0676",
  96. "140302": "345.7554",
  97. "140303": "1035.9252",
  98. "140304": "635.4588",
  99. "140400": "414.3692",
  100. "140402": "246.6370",
  101. "140403": "96.0690",
  102. "140404": "127.1165",
  103. "140421": "237.0112",
  104. "140422": "258.1460",
  105. "140423": "82.9698",
  106. "140424": "70.8896",
  107. "140425": "246.3135",
  108. "140426": "250.1353",
  109. "140428": "72.1090",
  110. "140429": "259.2111",
  111. "140430": "179.9762",
  112. "140500": "291.3779",
  113. "140502": "275.5176",
  114. "140521": "377.2406",
  115. "140522": "275.8139",
  116. "140523": "227.3493",
  117. "140524": "230.0927",
  118. "140525": "125.2743",
  119. "140526": "2469.5459",
  120. "140581": "558.3716",
  121. "140600": "575.5978",
  122. "140602": "4877.0074",
  123. "140621": "1176.6392",
  124. "140622": "816.3575",
  125. "140623": "215.8867",
  126. "140624": "3198.3529",
  127. "140625": "284.0745",
  128. "140626": "1124.7510",
  129. "140627": "2268.0609",
  130. "140702": "488.0201",
  131. "140721": "132.9112",
  132. "140722": "221.8521",
  133. "140723": "213.3633",
  134. "140724": "404.1722",
  135. "140725": "459.5585",
  136. "140726": "163.6010",
  137. "140727": "21.0697",
  138. "140781": "760.7122",
  139. "140782": "707.3486",
  140. "140783": "153.4838",
  141. "140784": "76.5792",
  142. "140785": "117.8202",
  143. "140800": "1083.5472",
  144. "140802": "447.9144",
  145. "140821": "124.5021",
  146. "140822": "129.1322",
  147. "140823": "766.5901",
  148. "140824": "1092.9483",
  149. "140825": "163.7870",
  150. "140826": "144.5532",
  151. "140900": "349.2848",
  152. "140902": "448.9940",
  153. "140921": "9.9996",
  154. "140922": "101.2754",
  155. "140923": "125.2193",
  156. "140924": "205.0660",
  157. "140925": "61.9459",
  158. "140926": "268.0242",
  159. "140927": "112.4528",
  160. "140928": "28.0536",
  161. "140929": "54.0725",
  162. "140981": "83.8572",
  163. "142200": "0.04",
  164. "142201": "467.7327",
  165. "142202": "148.0441",
  166. "142221": "440.2199",
  167. "142222": "414.4389",
  168. "142223": "397.8823",
  169. "142224": "60.0480",
  170. "142500": "183.5569",
  171. "142501": "746.7674",
  172. "142502": "782.7479",
  173. "142522": "18.28",
  174. "142523": "49.4689",
  175. "142524": "26.8418",
  176. "142525": "309.1744",
  177. "142526": "1068.8855",
  178. "142527": "262.5052",
  179. "142528": "17.9076",
  180. "142529": "30.7902",
  181. "142530": "319.3177",
  182. "142531": "240.9515",
  183. "142900": "545.0977",
  184. "142921": "471.0895",
  185. "142922": "62.8292",
  186. "142923": "696.4943"
  187. },
  188. "2011": {
  189. "140100": "725.7382",
  190. "140121": "867.3320",
  191. "140122": "145.9741",
  192. "140123": "181.2380",
  193. "140124": "553.5097",
  194. "140125": "201.2746",
  195. "140200": "1350.0051",
  196. "140205": "311.0845",
  197. "140206": "165.3985",
  198. "140221": "376.3236",
  199. "140222": "203.3382",
  200. "140223": "68.1117",
  201. "140300": "42.7176",
  202. "140302": "367.7678",
  203. "140303": "743.4373",
  204. "140304": "315.2416",
  205. "140400": "3966.1607",
  206. "140402": "110.2660",
  207. "140403": "259.3619",
  208. "140404": "93.3318",
  209. "140421": "111.9776",
  210. "140422": "554.7623",
  211. "140423": "113.5398",
  212. "140424": "169.8721",
  213. "140425": "241.0156",
  214. "140426": "371.3716",
  215. "140428": "1193.7264",
  216. "140429": "452.6335",
  217. "140430": "265.7366",
  218. "140500": "556.1597",
  219. "140502": "684.9885",
  220. "140521": "473.4730",
  221. "140522": "161.3675",
  222. "140523": "225.0738",
  223. "140524": "123.2909",
  224. "140525": "141.8375",
  225. "140526": "1035.5378",
  226. "140581": "1700.3540",
  227. "140600": "1259.0139",
  228. "140602": "2953.3671",
  229. "140621": "1275.8068",
  230. "140622": "2158.0129",
  231. "140623": "957",
  232. "140624": "1940.8689",
  233. "140625": "853.8531",
  234. "140626": "1143.2198",
  235. "140627": "1913.9836",
  236. "140700": "56.8958",
  237. "140702": "458.2778",
  238. "140721": "295.2057",
  239. "140722": "197.5868",
  240. "140723": "115.6403",
  241. "140724": "243.6128",
  242. "140725": "1982.9274",
  243. "140726": "73.5103",
  244. "140727": "193.7684",
  245. "140781": "1224.7420",
  246. "140782": "131.1689",
  247. "140783": "872.8530",
  248. "140784": "379.3342",
  249. "140785": "75.8478",
  250. "140800": "306.9381",
  251. "140802": "511.5864",
  252. "140821": "238.5011",
  253. "140822": "141.2888",
  254. "140823": "552.8114",
  255. "140824": "718.7155",
  256. "140825": "233.1595",
  257. "140826": "191.0096",
  258. "140900": "203.6254",
  259. "140902": "1097.8265",
  260. "140921": "188.6192",
  261. "140922": "240.4510",
  262. "140923": "230.6365",
  263. "140924": "538.2339",
  264. "140925": "71.0454",
  265. "140926": "334.8470",
  266. "140927": "125.5322",
  267. "140928": "289.6747",
  268. "140929": "90.9401",
  269. "140981": "97.6970",
  270. "142201": "518.2211",
  271. "142202": "457.6433",
  272. "142221": "341.4587",
  273. "142222": "107.4360",
  274. "142223": "317.3830",
  275. "142224": "54.3868",
  276. "142500": "151.9482",
  277. "142501": "396.4625",
  278. "142502": "2118.0633",
  279. "142522": "374.5748",
  280. "142523": "16.8651",
  281. "142524": "4.8571",
  282. "142525": "264.4244",
  283. "142526": "1750.4778",
  284. "142527": "289.8049",
  285. "142528": "31.4878",
  286. "142529": "168.4125",
  287. "142530": "1936.71",
  288. "142531": "203.1190",
  289. "142900": "928.3924",
  290. "142921": "1271.70",
  291. "142922": "79.6201",
  292. "142923": "1010.9917"
  293. },
  294. "2012": {
  295. "140100": "904.2517",
  296. "140121": "537.5601",
  297. "140122": "593.1409",
  298. "140123": "39.3442",
  299. "140124": "47.6449",
  300. "140125": "95.6354",
  301. "140200": "1335.2940",
  302. "140205": "157.5631",
  303. "140206": "18.6804",
  304. "140221": "727.4547",
  305. "140222": "145.4735",
  306. "140223": "104.0529",
  307. "140300": "535.6164",
  308. "140302": "456.4690",
  309. "140303": "529.2270",
  310. "140304": "85.3308",
  311. "140400": "2971.6672",
  312. "140402": "328.4169",
  313. "140403": "2426.4520",
  314. "140404": "173.7092",
  315. "140421": "215.0982",
  316. "140422": "248.9963",
  317. "140423": "98.1331",
  318. "140424": "91.7084",
  319. "140425": "260.2441",
  320. "140426": "246.9027",
  321. "140428": "367.0889",
  322. "140429": "471.5247",
  323. "140430": "209.8419",
  324. "140500": "438.8931",
  325. "140502": "341.8848",
  326. "140521": "307.9967",
  327. "140522": "1078.4476",
  328. "140523": "332.1588",
  329. "140524": "251.1891",
  330. "140525": "370.3165",
  331. "140526": "382.3510",
  332. "140581": "1065.8378",
  333. "140600": "352.4580",
  334. "140602": "1085.2704",
  335. "140621": "1103.3342",
  336. "140622": "2227.1315",
  337. "140623": "275.0806",
  338. "140624": "1747.3696",
  339. "140625": "654.2865",
  340. "140626": "459.1384",
  341. "140627": "1853.2854",
  342. "140700": "258.0701",
  343. "140702": "909.1869",
  344. "140721": "292.5792",
  345. "140722": "861.0902",
  346. "140723": "912.0391",
  347. "140724": "120.2348",
  348. "140725": "191.0157",
  349. "140726": "596.4336",
  350. "140727": "775.7596",
  351. "140781": "862.1870",
  352. "140782": "1643.0023",
  353. "140783": "643.5763",
  354. "140784": "92.5346",
  355. "140785": "54.3751",
  356. "140800": "483.2342",
  357. "140802": "1207.2431",
  358. "140821": "1107.5430",
  359. "140822": "143.0646",
  360. "140823": "664.9228",
  361. "140824": "2684.7980",
  362. "140825": "493.9453",
  363. "140826": "496.7032",
  364. "140900": "140.5657",
  365. "140902": "812.1640",
  366. "140921": "351.8924",
  367. "140922": "184.1644",
  368. "140923": "155.2511",
  369. "140924": "935.2508",
  370. "140925": "238.5902",
  371. "140926": "1139.4389",
  372. "140927": "139.7702",
  373. "140928": "73.7747",
  374. "140929": "178.8194",
  375. "140981": "342.7902",
  376. "142201": "1267.2437",
  377. "142202": "109.8130",
  378. "142221": "1546.6124",
  379. "142222": "944.5461",
  380. "142223": "530.4248",
  381. "142224": "693.9114",
  382. "142500": "209.5299",
  383. "142501": "403.2040",
  384. "142502": "1095.1108",
  385. "142522": "59.2193",
  386. "142523": "302.9508",
  387. "142524": "207.3452",
  388. "142525": "1110.0607",
  389. "142526": "2761.4695",
  390. "142527": "269.2814",
  391. "142528": "29.6824",
  392. "142529": "66.9245",
  393. "142530": "253.9864",
  394. "142531": "57.1876",
  395. "142900": "469.0522",
  396. "142921": "2055.2058",
  397. "142922": "88.3629",
  398. "142923": "1210.9203"
  399. },
  400. "2013": {
  401. "140100": "1233.5368",
  402. "140121": "343.8090",
  403. "140122": "360.7394",
  404. "140123": "343.7453",
  405. "140124": "142.6128",
  406. "140125": "155.0838",
  407. "140200": "1917.4828",
  408. "140205": "181.7986",
  409. "140206": "650.5456",
  410. "140221": "253.6148",
  411. "140222": "158.7589",
  412. "140223": "505.7883",
  413. "140300": "3.4244",
  414. "140302": "306.1179",
  415. "140303": "244.3298",
  416. "140304": "113.7825",
  417. "140400": "989.5815",
  418. "140402": "408.3445",
  419. "140403": "87.4224",
  420. "140404": "65.3362",
  421. "140421": "265.5460",
  422. "140422": "903.5161",
  423. "140423": "170.4438",
  424. "140424": "598.8138",
  425. "140425": "1079.4011",
  426. "140426": "358.3927",
  427. "140428": "61.2580",
  428. "140429": "281.0602",
  429. "140430": "538.1826",
  430. "140500": "217.5431",
  431. "140502": "845.5010",
  432. "140521": "1277.8440",
  433. "140522": "276.7721",
  434. "140523": "296.6204",
  435. "140524": "424.7533",
  436. "140525": "372.2175",
  437. "140526": "1156.0768",
  438. "140581": "1410.8531",
  439. "140600": "774.9078",
  440. "140602": "122.6553",
  441. "140621": "1496.1698",
  442. "140622": "4752.2966",
  443. "140623": "608.2063",
  444. "140624": "868.9294",
  445. "140625": "775.2818",
  446. "140626": "2169.8123",
  447. "140627": "810.1439",
  448. "140700": "134.8730",
  449. "140702": "368.5780",
  450. "140721": "351.7371",
  451. "140722": "131.6751",
  452. "140723": "289.9349",
  453. "140724": "627.6299",
  454. "140725": "734.6426",
  455. "140726": "1026.6029",
  456. "140727": "54.3299",
  457. "140781": "1272.0569",
  458. "140782": "926.4627",
  459. "140783": "167.9113",
  460. "140784": "111.46",
  461. "140785": "158.7986",
  462. "140800": "98.0373",
  463. "140802": "1326.0608",
  464. "140821": "435.7942",
  465. "140822": "522.9419",
  466. "140823": "485.8252",
  467. "140824": "812.8404",
  468. "140825": "374.0821",
  469. "140826": "715.3304",
  470. "140900": "1774.4002",
  471. "140902": "887.1772",
  472. "140921": "50.5576",
  473. "140922": "361.3739",
  474. "140923": "398.0033",
  475. "140924": "191.3758",
  476. "140925": "223.7503",
  477. "140926": "1023.6560",
  478. "140927": "401.4983",
  479. "140928": "107.5554",
  480. "140929": "71.6216",
  481. "140981": "179.6324",
  482. "142201": "640.3407",
  483. "142202": "255.7856",
  484. "142221": "389.8087",
  485. "142222": "94.2839",
  486. "142223": "174.8117",
  487. "142224": "209.1665",
  488. "142500": "85.7355",
  489. "142501": "262.7879",
  490. "142502": "1860.9893",
  491. "142522": "1172.4603",
  492. "142523": "1320.8754",
  493. "142524": "78.3491",
  494. "142525": "236.3568",
  495. "142526": "1866.5976",
  496. "142527": "713.5611",
  497. "142528": "17.3726",
  498. "142529": "21.6243",
  499. "142530": "616.6231",
  500. "142531": "214.8423",
  501. "142900": "760.2447",
  502. "142921": "2563.6273",
  503. "142922": "701.6768",
  504. "142923": "1702.0935"
  505. },
  506. "2014": {
  507. "140100": "492.4480",
  508. "140121": "188.6080",
  509. "140122": "176.9947",
  510. "140123": "591.3140",
  511. "140124": "247.52",
  512. "140125": "70.6449",
  513. "140200": "1288.2103",
  514. "140205": "146.1707",
  515. "140206": "21.9620",
  516. "140221": "558.5203",
  517. "140222": "116.1729",
  518. "140223": "183.2619",
  519. "140300": "8.6334",
  520. "140302": "185.9441",
  521. "140303": "235.6272",
  522. "140304": "359.9537",
  523. "140400": "186.4628",
  524. "140402": "501.3645",
  525. "140403": "1167.6727",
  526. "140404": "505.5814",
  527. "140421": "149.3648",
  528. "140422": "51.0924",
  529. "140423": "76.9384",
  530. "140424": "386.9924",
  531. "140425": "130.3016",
  532. "140426": "123.2055",
  533. "140428": "239.5615",
  534. "140429": "122.6820",
  535. "140430": "228.6348",
  536. "140500": "253.3864",
  537. "140502": "721.6941",
  538. "140521": "689.1426",
  539. "140522": "568.6140",
  540. "140523": "393.2609",
  541. "140524": "367.3057",
  542. "140525": "662.4712",
  543. "140526": "120.4832",
  544. "140581": "1049.7418",
  545. "140600": "879.8749",
  546. "140602": "137.3573",
  547. "140621": "173.9434",
  548. "140622": "604.4744",
  549. "140623": "640.4436",
  550. "140624": "820.0302",
  551. "140625": "453.8570",
  552. "140626": "721.6363",
  553. "140627": "1719.2095",
  554. "140700": "34.5395",
  555. "140702": "585.3405",
  556. "140721": "2979.6018",
  557. "140722": "476.3002",
  558. "140723": "171.8187",
  559. "140724": "208.4303",
  560. "140725": "194.5935",
  561. "140726": "166.2243",
  562. "140727": "147.8713",
  563. "140781": "731.1598",
  564. "140782": "502.6526",
  565. "140783": "911.2987",
  566. "140784": "1658.0546",
  567. "140785": "369.1015",
  568. "140800": "21.6871",
  569. "140802": "547.3604",
  570. "140821": "264.6688",
  571. "140822": "71.2161",
  572. "140823": "137.7194",
  573. "140824": "491.1039",
  574. "140825": "205.9957",
  575. "140826": "140.8115",
  576. "140900": "17.0335",
  577. "140902": "395.0336",
  578. "140921": "1032.1476",
  579. "140922": "234.3908",
  580. "140923": "247.1679",
  581. "140924": "403.1076",
  582. "140925": "98.8578",
  583. "140926": "1438.8968",
  584. "140927": "804.2020",
  585. "140928": "138.4346",
  586. "140929": "83.2574",
  587. "140981": "126.5918",
  588. "142201": "545.92",
  589. "142202": "50.4333",
  590. "142221": "198.3151",
  591. "142222": "240.8704",
  592. "142223": "684.0778",
  593. "142224": "96.2999",
  594. "142500": "32.1702",
  595. "142501": "1341.0582",
  596. "142502": "567.5273",
  597. "142522": "105.6240",
  598. "142523": "25.6986",
  599. "142524": "560.7732",
  600. "142525": "510.6955",
  601. "142526": "1013.8351",
  602. "142527": "123.6345",
  603. "142528": "90.5005",
  604. "142529": "41.4253",
  605. "142530": "98.1328",
  606. "142531": "117.6360",
  607. "142900": "256.8999",
  608. "142921": "3325.1233",
  609. "142922": "335.5565",
  610. "142923": "1211.5292"
  611. },
  612. "2015": {
  613. "140100": "657.4011",
  614. "140121": "723.8162",
  615. "140122": "667.0248",
  616. "140123": "339.9292",
  617. "140124": "120.6502",
  618. "140125": "56.9105",
  619. "140200": "1217.3084",
  620. "140205": "25.4219",
  621. "140206": "2.5274",
  622. "140221": "54.4517",
  623. "140222": "51.5740",
  624. "140223": "666.4069",
  625. "140302": "170.1886",
  626. "140303": "70.8085",
  627. "140304": "53.4379",
  628. "140400": "490.4053",
  629. "140402": "303.5389",
  630. "140403": "390.3715",
  631. "140404": "180.6301",
  632. "140421": "98.9250",
  633. "140422": "242.7316",
  634. "140423": "72.2480",
  635. "140424": "322.9428",
  636. "140425": "1364.5745",
  637. "140426": "270.0106",
  638. "140428": "182.4540",
  639. "140429": "598.8187",
  640. "140430": "515.23",
  641. "140500": "88.7969",
  642. "140502": "2186.6435",
  643. "140521": "244.7616",
  644. "140522": "188.4618",
  645. "140523": "184.0365",
  646. "140524": "275.1297",
  647. "140525": "557.1465",
  648. "140526": "1042.1148",
  649. "140581": "225.6945",
  650. "140600": "500.3178",
  651. "140602": "5.03",
  652. "140621": "1433.7775",
  653. "140622": "667.1636",
  654. "140623": "426.1136",
  655. "140624": "1163.3104",
  656. "140625": "537.4468",
  657. "140626": "55.0932",
  658. "140627": "2001.0690",
  659. "140702": "1425.3584",
  660. "140721": "213.6453",
  661. "140722": "168.2451",
  662. "140723": "243.6116",
  663. "140724": "207.5931",
  664. "140725": "281.2689",
  665. "140726": "493.3851",
  666. "140727": "1925.8939",
  667. "140781": "394.5656",
  668. "140782": "201.2507",
  669. "140783": "812.4978",
  670. "140784": "168.8555",
  671. "140785": "183.3510",
  672. "140800": "69.6997",
  673. "140802": "389.8238",
  674. "140821": "183.3239",
  675. "140822": "244.1428",
  676. "140823": "92.9422",
  677. "140824": "81.3083",
  678. "140825": "58.3936",
  679. "140826": "997.4156",
  680. "140900": "8.6108",
  681. "140902": "308.0123",
  682. "140921": "382.3081",
  683. "140922": "176.6065",
  684. "140923": "316.9157",
  685. "140924": "800.9615",
  686. "140925": "384.1871",
  687. "140926": "492.9450",
  688. "140927": "235.3594",
  689. "140928": "594.6195",
  690. "140929": "542.7934",
  691. "140981": "129.7236",
  692. "142201": "324.1166",
  693. "142202": "146.2951",
  694. "142221": "925.9685",
  695. "142222": "322.4206",
  696. "142223": "254.5995",
  697. "142224": "61.1898",
  698. "142500": "35.8069",
  699. "142501": "228.0798",
  700. "142502": "437.2987",
  701. "142522": "45.2911",
  702. "142523": "22.8543",
  703. "142524": "369.3068",
  704. "142525": "237.2537",
  705. "142526": "318.8456",
  706. "142527": "119.3511",
  707. "142528": "2.0433",
  708. "142529": "88.1886",
  709. "142530": "901.7733",
  710. "142531": "356.1301",
  711. "142900": "477.8186",
  712. "142921": "1541.0103",
  713. "142922": "824.7247",
  714. "142923": "433.0127"
  715. },
  716. "2016": {
  717. "140100": "661.1344",
  718. "140121": "1037.7875",
  719. "140122": "254.3192",
  720. "140123": "442.0186",
  721. "140124": "48.6703",
  722. "140125": "64.2028",
  723. "140200": "884.7170",
  724. "140205": "266.5242",
  725. "140206": "26.8029",
  726. "140221": "316.7394",
  727. "140222": "206.1457",
  728. "140223": "830.5623",
  729. "140300": "44.4470",
  730. "140302": "295.7570",
  731. "140303": "429.8497",
  732. "140304": "80.2683",
  733. "140400": "194.5989",
  734. "140402": "272.4798",
  735. "140403": "135.3283",
  736. "140404": "332.0728",
  737. "140421": "97.7835",
  738. "140422": "95.6966",
  739. "140423": "1380.6984",
  740. "140424": "66.0825",
  741. "140425": "391.8810",
  742. "140426": "660.9042",
  743. "140428": "370.2464",
  744. "140429": "104.7608",
  745. "140430": "161.1808",
  746. "140500": "82.1084",
  747. "140502": "2548.7661",
  748. "140521": "46.8017",
  749. "140522": "48.4738",
  750. "140523": "89.6924",
  751. "140524": "46.5803",
  752. "140525": "1776.9762",
  753. "140526": "182.2746",
  754. "140581": "549.4926",
  755. "140600": "272.8034",
  756. "140621": "352.0157",
  757. "140622": "552.1714",
  758. "140623": "252.0576",
  759. "140624": "377.1648",
  760. "140625": "87.6007",
  761. "140626": "1084.3177",
  762. "140627": "129.0268",
  763. "140700": "15.9108",
  764. "140702": "1404.0920",
  765. "140721": "65.9877",
  766. "140722": "123.8470",
  767. "140723": "101.9339",
  768. "140724": "36.2066",
  769. "140725": "101.3626",
  770. "140726": "134.3530",
  771. "140727": "100.6636",
  772. "140781": "349.7098",
  773. "140782": "256.4075",
  774. "140783": "190.72",
  775. "140784": "128.8655",
  776. "140785": "29.3776",
  777. "140802": "771.1962",
  778. "140821": "110.1367",
  779. "140822": "506.1767",
  780. "140823": "87.7133",
  781. "140824": "185.6619",
  782. "140825": "12.1326",
  783. "140826": "861.0456",
  784. "140902": "308.3716",
  785. "140921": "25.7568",
  786. "140922": "30.1426",
  787. "140923": "65.5157",
  788. "140924": "154.5962",
  789. "140925": "92.1627",
  790. "140926": "640.0016",
  791. "140927": "362.9310",
  792. "140928": "100.7349",
  793. "140929": "184.7764",
  794. "140981": "260.7272",
  795. "142201": "605.5936",
  796. "142202": "351.1974",
  797. "142221": "452.0705",
  798. "142222": "87.5717",
  799. "142223": "1229.4216",
  800. "142224": "73.8173",
  801. "142500": "10.5162",
  802. "142501": "546.6708",
  803. "142502": "485.1853",
  804. "142522": "301.0052",
  805. "142523": "10.8018",
  806. "142524": "204.4706",
  807. "142525": "53.1570",
  808. "142526": "286.4228",
  809. "142527": "140.3932",
  810. "142528": "23.2263",
  811. "142529": "19.8112",
  812. "142530": "843.6334",
  813. "142531": "330.7295",
  814. "142900": "504.9594",
  815. "142921": "1227.4446",
  816. "142922": "62.6288",
  817. "142923": "2212.8305"
  818. },
  819. "2017": {
  820. "140100": "656.1373",
  821. "140121": "194.7794",
  822. "140122": "227.9812",
  823. "140123": "1478.4323",
  824. "140124": "9.4706",
  825. "140125": "632.0803",
  826. "140200": "1099.9997",
  827. "140205": "35.7632",
  828. "140206": "14.0420",
  829. "140221": "342.8664",
  830. "140222": "298.8545",
  831. "140223": "291.3892",
  832. "140300": "183.0166",
  833. "140302": "268.0858",
  834. "140303": "103.9129",
  835. "140304": "132.2715",
  836. "140400": "495.0339",
  837. "140402": "370.0489",
  838. "140403": "358.5887",
  839. "140404": "474.2119",
  840. "140421": "473.4359",
  841. "140422": "68.5563",
  842. "140423": "258.3960",
  843. "140424": "329.0697",
  844. "140425": "267.5409",
  845. "140426": "92.4187",
  846. "140428": "68.9703",
  847. "140429": "63.9042",
  848. "140430": "666.5238",
  849. "140500": "88.1941",
  850. "140502": "640.8283",
  851. "140521": "199.8471",
  852. "140522": "60.6928",
  853. "140523": "47.0109",
  854. "140524": "80.1254",
  855. "140525": "393.3848",
  856. "140526": "368.72",
  857. "140581": "236.9509",
  858. "140600": "583.7623",
  859. "140621": "3040.0037",
  860. "140622": "1181.9655",
  861. "140623": "600.4076",
  862. "140624": "361.4340",
  863. "140625": "3362.5191",
  864. "140626": "1769.3013",
  865. "140627": "970.6010",
  866. "140702": "506.6148",
  867. "140721": "179.8178",
  868. "140722": "784.4733",
  869. "140723": "180.7148",
  870. "140724": "661.4439",
  871. "140725": "776.1707",
  872. "140726": "102.9001",
  873. "140727": "1839.8505",
  874. "140781": "234.2544",
  875. "140782": "324.9592",
  876. "140783": "241.5482",
  877. "140784": "114.6391",
  878. "140785": "11.6312",
  879. "140800": "1.1883",
  880. "140802": "702.0917",
  881. "140821": "112.1550",
  882. "140822": "125.3605",
  883. "140823": "143.8519",
  884. "140824": "809.7385",
  885. "140825": "84.4042",
  886. "140826": "92.9978",
  887. "140902": "636.8617",
  888. "140921": "1229.7784",
  889. "140922": "51.3874",
  890. "140923": "353.4095",
  891. "140924": "246.2279",
  892. "140925": "60.4363",
  893. "140926": "1707.6388",
  894. "140927": "61.5988",
  895. "140928": "147.7167",
  896. "140929": "96.3376",
  897. "140981": "93.0628",
  898. "142201": "790.8320",
  899. "142202": "46.6621",
  900. "142221": "237.1121",
  901. "142222": "1743.5119",
  902. "142223": "292.8834",
  903. "142224": "352.5204",
  904. "142500": "29.1288",
  905. "142501": "305.8475",
  906. "142502": "1623.3117",
  907. "142522": "94.1393",
  908. "142523": "21.1443",
  909. "142524": "67.9038",
  910. "142525": "124.4579",
  911. "142526": "806.8879",
  912. "142527": "143.8064",
  913. "142528": "35.7630",
  914. "142529": "31.75",
  915. "142530": "67.8160",
  916. "142531": "538.9874",
  917. "142900": "552.6106",
  918. "142921": "5301.7925",
  919. "142922": "1405.9631",
  920. "142923": "7346.5042"
  921. },
  922. "2018": {
  923. "140100": "1542.4120",
  924. "140121": "1113.8766",
  925. "140122": "495.6454",
  926. "140123": "659.2463",
  927. "140124": "188.1108",
  928. "140125": "74.8566",
  929. "140200": "1453.1215",
  930. "140205": "76.5217",
  931. "140206": "18.1574",
  932. "140221": "129.9280",
  933. "140222": "79.5460",
  934. "140223": "307.4890",
  935. "140300": "48.9424",
  936. "140302": "173.3332",
  937. "140303": "224.1612",
  938. "140304": "283.7588",
  939. "140400": "208.2525",
  940. "140402": "574.4189",
  941. "140403": "339.3090",
  942. "140404": "534.4803",
  943. "140421": "372.8863",
  944. "140422": "281.7991",
  945. "140423": "46.8522",
  946. "140424": "255.4985",
  947. "140425": "146.0350",
  948. "140426": "113.3093",
  949. "140428": "232.6016",
  950. "140429": "275.2395",
  951. "140430": "313.4722",
  952. "140500": "317.3409",
  953. "140502": "2451.4360",
  954. "140521": "230.48",
  955. "140522": "112.0213",
  956. "140523": "230.3941",
  957. "140524": "11.1156",
  958. "140525": "764.6047",
  959. "140526": "351.5881",
  960. "140581": "58.6065",
  961. "140600": "222.8938",
  962. "140621": "1078.3351",
  963. "140622": "405.5149",
  964. "140623": "94.0762",
  965. "140624": "492.6161",
  966. "140625": "111.0964",
  967. "140626": "415.0164",
  968. "140627": "499.3547",
  969. "140702": "168.6260",
  970. "140721": "113.7414",
  971. "140722": "50.5382",
  972. "140723": "1035.7011",
  973. "140724": "49.86",
  974. "140725": "748.8506",
  975. "140726": "153.0970",
  976. "140727": "85.6922",
  977. "140781": "420.5807",
  978. "140782": "139.5195",
  979. "140783": "198.2301",
  980. "140784": "390.1866",
  981. "140785": "52.3869",
  982. "140800": "23.2084",
  983. "140802": "646.5557",
  984. "140821": "162.2169",
  985. "140822": "159.0596",
  986. "140823": "142.3189",
  987. "140824": "388.0174",
  988. "140825": "155.4954",
  989. "140826": "72.2824",
  990. "140902": "385.4288",
  991. "140921": "163.1308",
  992. "140922": "320.4870",
  993. "140923": "65.5738",
  994. "140924": "511.7722",
  995. "140925": "107.3549",
  996. "140926": "901.5117",
  997. "140927": "71.3598",
  998. "140928": "200.9832",
  999. "140929": "118.9516",
  1000. "140981": "162.6668",
  1001. "142201": "337.3066",
  1002. "142202": "114.6808",
  1003. "142221": "368.0983",
  1004. "142222": "133.2952",
  1005. "142223": "189.4134",
  1006. "142224": "47.1110",
  1007. "142500": "18.8130",
  1008. "142501": "113.6131",
  1009. "142502": "1044.1396",
  1010. "142522": "160.9538",
  1011. "142523": "16.2491",
  1012. "142524": "73.9273",
  1013. "142525": "770.0922",
  1014. "142526": "411.2780",
  1015. "142527": "248.5166",
  1016. "142528": "129.9417",
  1017. "142529": "84.0227",
  1018. "142530": "177.0777",
  1019. "142531": "360.8542",
  1020. "142900": "965.08",
  1021. "142921": "728.7687",
  1022. "142922": "833.2239",
  1023. "142923": "685.2196"
  1024. },
  1025. "2019": {
  1026. "140100": "1426.4599",
  1027. "140121": "429.9321",
  1028. "140122": "71.3865",
  1029. "140123": "409.5661",
  1030. "140124": "82.0733",
  1031. "140125": "59.5187",
  1032. "140200": "1370.4218",
  1033. "140205": "149.3454",
  1034. "140221": "389.0164",
  1035. "140222": "69.3430",
  1036. "140223": "766.8370",
  1037. "140302": "255.7231",
  1038. "140303": "140.8585",
  1039. "140304": "222.6433",
  1040. "140400": "262.8053",
  1041. "140402": "367.1949",
  1042. "140403": "102.4690",
  1043. "140404": "353.2841",
  1044. "140421": "1078.3273",
  1045. "140422": "409.7543",
  1046. "140423": "44.7654",
  1047. "140424": "464.1628",
  1048. "140425": "397.6922",
  1049. "140426": "414.3687",
  1050. "140428": "81.2956",
  1051. "140429": "337.8858",
  1052. "140430": "336.5303",
  1053. "140500": "539.6015",
  1054. "140502": "134.9630",
  1055. "140521": "235.2053",
  1056. "140522": "1309.6345",
  1057. "140523": "167.9607",
  1058. "140524": "88.0074",
  1059. "140525": "591.6426",
  1060. "140526": "335.0253",
  1061. "140581": "120.5032",
  1062. "140600": "767.1310",
  1063. "140621": "1007.3587",
  1064. "140622": "1970.4013",
  1065. "140623": "1234.8686",
  1066. "140624": "339.4425",
  1067. "140625": "268.6749",
  1068. "140626": "1147.4756",
  1069. "140627": "1428.3857",
  1070. "140702": "200.3513",
  1071. "140721": "268.4670",
  1072. "140722": "58.1022",
  1073. "140723": "96.9057",
  1074. "140724": "1670.0388",
  1075. "140725": "1029.8746",
  1076. "140726": "142.8676",
  1077. "140727": "334.0793",
  1078. "140781": "125.3805",
  1079. "140782": "84.3603",
  1080. "140783": "184.9263",
  1081. "140784": "122.6631",
  1082. "140785": "51.6365",
  1083. "140800": "23.1206",
  1084. "140802": "611.8814",
  1085. "140821": "297.5557",
  1086. "140822": "31.2730",
  1087. "140823": "84.4795",
  1088. "140824": "319.7463",
  1089. "140825": "355.5374",
  1090. "140826": "61.0247",
  1091. "140902": "573.5614",
  1092. "140921": "216.0572",
  1093. "140922": "75.5550",
  1094. "140923": "141.3324",
  1095. "140924": "121.3818",
  1096. "140925": "603.5244",
  1097. "140926": "1532.0602",
  1098. "140927": "121.3032",
  1099. "140928": "154.4787",
  1100. "140929": "137.8006",
  1101. "140981": "555.7604",
  1102. "142201": "447.3956",
  1103. "142202": "10.5571",
  1104. "142221": "302.0771",
  1105. "142222": "72.8530",
  1106. "142223": "193.6069",
  1107. "142224": "228.6765",
  1108. "142500": "1602.8985",
  1109. "142501": "151.8468",
  1110. "142502": "337.9305",
  1111. "142522": "63.2894",
  1112. "142523": "478.6132",
  1113. "142524": "89.0827",
  1114. "142525": "232.0411",
  1115. "142526": "434.4370",
  1116. "142527": "128.1066",
  1117. "142528": "73.2098",
  1118. "142529": "331.5521",
  1119. "142530": "110.2495",
  1120. "142531": "320.1140",
  1121. "142900": "520.1916",
  1122. "142921": "870.7220",
  1123. "142922": "358.3483",
  1124. "142923": "492.7120"
  1125. },
  1126. "2020": {
  1127. "140100": "824.3833",
  1128. "140121": "212.4403",
  1129. "140122": "68.7290",
  1130. "140123": "405.9009",
  1131. "140124": "86.1804",
  1132. "140125": "45.4994",
  1133. "140200": "722.9020",
  1134. "140205": "85.8040",
  1135. "140206": "14.6681",
  1136. "140221": "36.7410",
  1137. "140222": "27.2602",
  1138. "140223": "308.6865",
  1139. "140302": "139.2861",
  1140. "140303": "287.3080",
  1141. "140304": "213.2499",
  1142. "140400": "233.3834",
  1143. "140402": "821.2440",
  1144. "140403": "98.6719",
  1145. "140404": "778.3350",
  1146. "140421": "38.4991",
  1147. "140422": "72.5462",
  1148. "140423": "139.1010",
  1149. "140424": "81.9209",
  1150. "140425": "1796.9944",
  1151. "140426": "90.4892",
  1152. "140428": "429.0789",
  1153. "140429": "320.0524",
  1154. "140430": "237.1708",
  1155. "140500": "186.7169",
  1156. "140502": "176.6268",
  1157. "140521": "84.1853",
  1158. "140522": "83.4525",
  1159. "140523": "298.5162",
  1160. "140524": "33.5498",
  1161. "140525": "207.1127",
  1162. "140526": "103.7207",
  1163. "140581": "67.6355",
  1164. "140600": "140.7863",
  1165. "140602": "390.7629",
  1166. "140621": "509.6370",
  1167. "140622": "894.9456",
  1168. "140623": "392.4390",
  1169. "140624": "191.6298",
  1170. "140625": "164.9536",
  1171. "140626": "359.8964",
  1172. "140627": "654.3306",
  1173. "140702": "64.2674",
  1174. "140721": "196.9512",
  1175. "140722": "1206.5899",
  1176. "140723": "248.1823",
  1177. "140724": "284.1358",
  1178. "140725": "469.4776",
  1179. "140726": "29.8315",
  1180. "140727": "11.4149",
  1181. "140781": "132.8673",
  1182. "140782": "319.6468",
  1183. "140783": "81.0593",
  1184. "140784": "45.0656",
  1185. "140785": "159.7807",
  1186. "140802": "172.5762",
  1187. "140821": "209.4779",
  1188. "140822": "9.4834",
  1189. "140823": "40.8134",
  1190. "140824": "54.5912",
  1191. "140825": "93.4048",
  1192. "140826": "183.8227",
  1193. "140902": "362.3346",
  1194. "140921": "886.6824",
  1195. "140922": "38.5836",
  1196. "140923": "120.6704",
  1197. "140924": "526.3233",
  1198. "140925": "240.2410",
  1199. "140926": "758.8196",
  1200. "140927": "260.9247",
  1201. "140928": "129.8564",
  1202. "140929": "208.0759",
  1203. "140981": "275.2294",
  1204. "142201": "817.4404",
  1205. "142202": "11.5312",
  1206. "142221": "445.7731",
  1207. "142222": "23.4501",
  1208. "142223": "117.9373",
  1209. "142224": "16.3246",
  1210. "142500": "5.5730",
  1211. "142501": "13.4411",
  1212. "142502": "1419.2019",
  1213. "142522": "50.5499",
  1214. "142523": "43.3847",
  1215. "142524": "18.2201",
  1216. "142525": "96.5219",
  1217. "142526": "2089.4329",
  1218. "142527": "76.1852",
  1219. "142528": "806.2521",
  1220. "142529": "161.4295",
  1221. "142530": "56.1777",
  1222. "142531": "356.9230",
  1223. "142900": "236.6538",
  1224. "142921": "640.4761",
  1225. "142922": "241.5932",
  1226. "142923": "233.7002"
  1227. }
  1228. };
  1229. }
  1230. // 获取专项统计模块获取登陆信息和点击地图
  1231. function init() {
  1232. // var userinfo = getUserInfo();
  1233. // if (!userinfo) {
  1234. // console.error("专项统计模块获取登陆信息失败!");
  1235. // return;
  1236. // }
  1237. windowResizeFun();
  1238. var list = {};
  1239. for (var attr in TDYTDM.classify) {
  1240. var item = TDYTDM.classify[attr];
  1241. for (var i = 0; i < item.length; i++) {
  1242. list[item[i]] = attr;
  1243. }
  1244. }
  1245. TDYTDM["handle"] = list;
  1246. getGDLBData();
  1247. resertEcharts("", "1");
  1248. // 点击地图
  1249. myChart.on('click', function (params) {
  1250. if (params.name) {
  1251. $(".loading").show();
  1252. setTimeout(function () {
  1253. mapYearsType1 = false
  1254. btnType = false
  1255. currentXzqdm = params.data.code
  1256. getGDLBData(params.data.code)
  1257. if ((parseInt(params.seriesName) + 1).toString() == "2") {
  1258. dataShi = objList
  1259. } else if ((parseInt(params.seriesName) + 1).toString() == "3") {
  1260. dataXian = objList
  1261. }
  1262. // resertEcharts("", "1");
  1263. // resertEcharts(params.data.code, (parseInt(params.seriesName) + 1).toString(), params.name);
  1264. }, 10);
  1265. }
  1266. });
  1267. myChart.hideLoading();
  1268. }
  1269. // 画地图图表
  1270. function resertEcharts(xzq, type, name, year) {
  1271. if (!year) {
  1272. resertEchartsParams = {
  1273. xzq: xzq,
  1274. type: type,
  1275. name: name
  1276. }
  1277. }
  1278. if (!statisticsInfoByXZQ) {
  1279. statisticsInfoByXZQ = getXZQData();
  1280. if (statisticsInfoByXZQ) {
  1281. var years = [];
  1282. for (var attr in statisticsInfoByXZQ) {
  1283. years.push(parseInt(attr));
  1284. }
  1285. years.sort(function (a, b) {
  1286. return a - b;
  1287. });
  1288. statisticsInfoByXZQ["years"] = years;
  1289. }
  1290. xzqSlider = slider.render({
  1291. elem: '#' + XZQConfig.container,
  1292. min: years[0],
  1293. max: years[years.length - 1],
  1294. theme: '#5470c6',
  1295. //type: 'vertical', //垂直滑块
  1296. showstep: true,
  1297. change: function (data) {
  1298. resertEcharts(null, null, null, data);
  1299. }
  1300. });
  1301. statisticsInfoByXZQ["curYear"] = statisticsInfoByXZQ["years"][0];
  1302. }
  1303. curYear = year ? year : statisticsInfoByXZQ["curYear"];
  1304. var mapYearsText = null
  1305. if (mapYearsType) {
  1306. mapYearsText = mapYears
  1307. mapYearsType = false
  1308. } else {
  1309. if (mapYearsType1) {
  1310. mapYearsText = curYear
  1311. } else {
  1312. mapYearsText = mapYears
  1313. }
  1314. }
  1315. let yearSpan = currentYear === '' ? yearData[0] : currentYear
  1316. $(".yearSpan").html(yearSpan + "年");
  1317. statisticsInfoByXZQ["curYear"] = curYear;
  1318. var list = [];
  1319. var chartType = "";
  1320. switch (resertEchartsParams.type) {
  1321. case "1": //盟市
  1322. btnMeg = 1
  1323. var html = "<a class='xzqBtn' value='' type='1' >山西省</a>";
  1324. elementTemplate(html);
  1325. chartType = "MS";
  1326. if (!loadGeoJson[chartType]) {
  1327. loadGeoJson[chartType] = getGeoJson(msurl);
  1328. }
  1329. for (var i = 0; i < loadGeoJson[chartType].features.length; i++) {
  1330. var info = loadGeoJson[chartType].features[i]["properties"];
  1331. var code = info[codefield].toString().substr(0, 4);
  1332. var value = 0;
  1333. for (var attr in statisticsInfoByXZQ[curYear]) {
  1334. if (attr.toString().indexOf(code) == 0) {
  1335. value += parseFloat(statisticsInfoByXZQ[curYear][attr]);
  1336. }
  1337. }
  1338. list.push({
  1339. name: info[namefield],
  1340. // value: value ? Math.round(value * 100) / 100 : 0,
  1341. value: 0,
  1342. code: info[codefield]
  1343. });
  1344. }
  1345. echarts.registerMap('MS', loadGeoJson[chartType]);
  1346. break;
  1347. case "2": //旗县
  1348. btnMeg = 2
  1349. var html = "<a class='xzqBtn' value='' type='1' >山西省</a>";
  1350. html += "<a class='xzqBtn' value='" + resertEchartsParams.xzq + "' type='2' >" + resertEchartsParams.name + "</a>";
  1351. qixianName = resertEchartsParams.name
  1352. elementTemplate(html);
  1353. chartType = resertEchartsParams.xzq.length == 6 ? resertEchartsParams.xzq.substr(0, 4) : resertEchartsParams.xzq;
  1354. if (!loadGeoJson["QX"]) {
  1355. loadGeoJson["QX"] = getGeoJson(qxurl);
  1356. }
  1357. var list = [];
  1358. var json = {
  1359. type: "FeatureCollection",
  1360. features: []
  1361. };
  1362. for (var i = 0; i < loadGeoJson["QX"].features.length; i++) {
  1363. var info = loadGeoJson["QX"].features[i]["properties"];
  1364. if (info[codefield].indexOf(chartType) > -1) {
  1365. list.push({
  1366. name: info[namefield],
  1367. // value: statisticsInfoByXZQ[curYear][info[codefield]] ? Math.round(parseFloat(statisticsInfoByXZQ[curYear][info[codefield]]) * 100) / 100 : 0,
  1368. code: info[codefield],
  1369. value: 0,
  1370. });
  1371. json.features.push(loadGeoJson["QX"].features[i]);
  1372. }
  1373. }
  1374. echarts.registerMap(chartType, json);
  1375. break;
  1376. case "3": //旗县
  1377. btnMeg = 3
  1378. var html = $(".layui-breadcrumb").text().split(">")[1];
  1379. html = "<a class='xzqBtn' value='' type='1' >山西省</a><a class='xzqBtn' value='" + resertEchartsParams.xzq.substr(0, 4) + "' type='2' >" + html + "</a>";
  1380. html += "<a class='xzqBtn' value='" + resertEchartsParams.xzq + "' type='3' >" + resertEchartsParams.name + "</a>";
  1381. elementTemplate(html);
  1382. chartType = resertEchartsParams.xzq;
  1383. if (!loadGeoJson["QX"]) {
  1384. loadGeoJson["QX"] = getGeoJson(qxurl);
  1385. }
  1386. var list = [];
  1387. var json = {
  1388. type: "FeatureCollection",
  1389. features: []
  1390. };
  1391. for (var i = 0; i < loadGeoJson["QX"].features.length; i++) {
  1392. var info = loadGeoJson["QX"].features[i]["properties"];
  1393. if (info[codefield] == chartType) {
  1394. list.push({
  1395. name: info[namefield],
  1396. // value: statisticsInfoByXZQ[curYear][info[codefield]] ? Math.round(parseFloat(statisticsInfoByXZQ[curYear][info[codefield]]) * 100) / 100 : 0,
  1397. code: info[codefield],
  1398. value: 0,
  1399. });
  1400. json.features.push(loadGeoJson["QX"].features[i]);
  1401. break;
  1402. }
  1403. }
  1404. echarts.registerMap(chartType, json);
  1405. break;
  1406. default:
  1407. return $(".loading").hide();
  1408. break;
  1409. }
  1410. list.sort(function (a, b) {
  1411. return a.value - b.value
  1412. });
  1413. analysisList = list
  1414. option = {
  1415. title: {
  1416. // text: '{A| ' + XZQConfig.chartTitle + '}',
  1417. text: '{A| 山西省耕地质量变化统计分析}',
  1418. x: 'left',
  1419. //padding: [5, 5, 5, 5],
  1420. textStyle: {
  1421. align: 'center',
  1422. rich: {
  1423. A: {
  1424. backgroundColor: {
  1425. image: XZQConfig.titleImage.image,
  1426. },
  1427. width: XZQConfig.titleImage.width,
  1428. height: XZQConfig.titleImage.height,
  1429. color: "#5470c6",
  1430. fontSize: 17,
  1431. fontWeight: 'bold',
  1432. verticalAlign: "middle",
  1433. lineHeight: 50,
  1434. left: 15
  1435. }
  1436. }
  1437. },
  1438. left: 15
  1439. },
  1440. tooltip: {
  1441. trigger: 'item',
  1442. show: true,
  1443. formatter: function (data) {
  1444. var total = 0;
  1445. for (var i = 0; i < myChart.getOption().series[0].data.length; i++) {
  1446. total += myChart.getOption().series[0].data[i].value;
  1447. }
  1448. //return data.name + '<br/>' + XZQConfig.title + data.value + XZQConfig.unit;
  1449. var per = Math.round(data.value / total * 10000) / 100;
  1450. return data.name;
  1451. return data.name + '<br/>' + XZQConfig.title + data.value + XZQConfig.unit + '<br/>本级占比:' + per + "%";
  1452. }
  1453. },
  1454. toolbox: {
  1455. show: false,
  1456. orient: 'vertical',
  1457. left: 'right',
  1458. top: 'center',
  1459. feature: {
  1460. saveAsImage: {}
  1461. }
  1462. },
  1463. visualMap: {
  1464. show:false,
  1465. min: list[0].value,
  1466. max: list[list.length - 1].value,
  1467. text: ['高', '低'],
  1468. realtime: false,
  1469. calculable: true,
  1470. inRange: {
  1471. //color: ['#313695', '#4575b4', '#74add1', '#abd9e9', '#e0f3f8', '#ffffbf', '#fee090', '#fdae61', '#f46d43', '#d73027', '#a50026']
  1472. //color: globleConfig.color
  1473. color: ['#0000ff30', '#0000ff']
  1474. },
  1475. orient: 'vertical',
  1476. // right: '2%',
  1477. right:"0%",
  1478. bottom: '0%',
  1479. z: 100,
  1480. },
  1481. series: [{
  1482. name: resertEchartsParams.type,
  1483. type: 'map',
  1484. top:"20",
  1485. bottom:"20",
  1486. roam: true,
  1487. mapType: chartType, // 自定义扩展图表类型
  1488. label: {
  1489. show: true,
  1490. //color: "blue",
  1491. //fontStyle: 'normal',
  1492. //fontWeight: 'normal',
  1493. textBorderColor: "white",
  1494. textBorderWidth: 1
  1495. },
  1496. itemStyle: {
  1497. normal: {
  1498. borderWidth: 1,
  1499. borderColor: '#ddd', //区域边框色
  1500. //areaColor: '#FFDAB9',//区域背景色
  1501. label: {
  1502. show: true,
  1503. //textBorderColor: "white",
  1504. //textBorderWidth: 1,
  1505. textStyle: {
  1506. color: '#ffffff', //文字颜色
  1507. fontSize: 12 //文字大小
  1508. }
  1509. }
  1510. },
  1511. emphasis: { // 选中样式
  1512. borderWidth: 1,
  1513. borderColor: '#00ffff',
  1514. color: '#ffffff',
  1515. label: {
  1516. show: true,
  1517. textStyle: {
  1518. color: '#ff0000'
  1519. }
  1520. }
  1521. }
  1522. },
  1523. data: list
  1524. }]
  1525. };
  1526. setTimeout(() => {
  1527. window.onresize = function () {
  1528. myChart.resize()
  1529. }
  1530. }, 200)
  1531. myChart.clear();
  1532. myChart.setOption(option);
  1533. // if (year) {
  1534. // var data = filterArray(myTables["myChartTable2"].config.dataStore, [{
  1535. // field: "QDRQ",
  1536. // value: year,
  1537. // type: "like"
  1538. // }]);
  1539. // myTables["myChartTable2"].reload({
  1540. // data: data
  1541. // }, false);
  1542. // } else {
  1543. // // createVisualizationCharts(resertEchartsParams.xzq ? chartType : "")
  1544. // }
  1545. }
  1546. // 为行政区域赋值,点击行政区域
  1547. function elementTemplate(html) {
  1548. $(".layui-breadcrumb").html(html);
  1549. element ? element.render() : null;
  1550. $(".xzqBtn").click(function (e) {
  1551. onTabClick(e);
  1552. });
  1553. }
  1554. // 点击行政区域文字信息
  1555. function onTabClick(e) {
  1556. $(".loading").show();
  1557. setTimeout(function () {
  1558. resertEcharts($(e.target).attr("value"), $(e.target).attr("type"), $(e.target).html());
  1559. btnType = true
  1560. if (e.target.text == '山西省') {
  1561. getGDLBData()
  1562. } else {
  1563. getGDLBData($(e.target).attr("value"))
  1564. }
  1565. }, 50);
  1566. }
  1567. //得到随机的颜色值
  1568. function randomColor() {
  1569. var r = Math.floor(Math.random() * 256);
  1570. var g = Math.floor(Math.random() * 256);
  1571. var b = Math.floor(Math.random() * 256);
  1572. return "rgb(" + r + "," + g + "," + b + ")";
  1573. }
  1574. // 一维数组转换为二维数组
  1575. function arrTrans(num, arr) {
  1576. const iconsArr = [];
  1577. arr.forEach((item, index) => {
  1578. const page = Math.floor(index / num); // 计算该元素为第几个素组内
  1579. if (!iconsArr[page]) { // 判断是否存在
  1580. iconsArr[page] = [];
  1581. }
  1582. iconsArr[page].push(item);
  1583. });
  1584. return iconsArr;
  1585. }
  1586. var arableNF = null
  1587. var arableXZQDM
  1588. var objIndex = 0
  1589. var objIndexXZQ = 0
  1590. var objIndexXZQ1 = 0
  1591. var oldobjList = xzLineDataList = []
  1592. var objIndexNF = 0
  1593. var arableType = false
  1594. var oldArble = null
  1595. var dlDjData = []
  1596. // 排序的一个公用函数 传入排序的属性值 从大到小
  1597. function creatCompare(propertyName) {
  1598. return function (obj1, obj2) {
  1599. var value1 = obj1[propertyName];
  1600. var value2 = obj2[propertyName];
  1601. if (value1 < value2) {
  1602. return -1
  1603. } else if (value1 > value2) {
  1604. return 1
  1605. } else {
  1606. return 0
  1607. }
  1608. }
  1609. }
  1610. // 时间轴样式
  1611. function timeLine() {
  1612. let timeLineLeft = -15
  1613. // selected
  1614. let timeLinehtml = ''
  1615. yearData.map((item, index) => {
  1616. if (index == 0) {
  1617. timeLinehtml += `
  1618. <li>
  1619. <a class="order_item selected" style="left:${timeLineLeft += 20}%;">${item}</a>
  1620. </li>
  1621. `
  1622. } else {
  1623. timeLinehtml += `
  1624. <li>
  1625. <a class="order_item" style="left:${timeLineLeft += 20}%;">${item}</a>
  1626. </li>
  1627. `
  1628. }
  1629. })
  1630. $('.time_line ol').html(timeLinehtml)
  1631. targetType = true
  1632. $('.order_item').on('click', function (e) {
  1633. let timeText = e.target.innerHTML
  1634. $(this).addClass('selected')
  1635. $(this).parent().siblings().find('.order_item').removeClass('selected')
  1636. currentYear = timeText
  1637. //resertEcharts(null, null, null, parseInt(timeText));
  1638. resertEcharts($(e.target).attr("value"), $(e.target).attr("type"), $(e.target).html(),parseInt(timeText));
  1639. if (currentXzqdm == "140000") {
  1640. getGDLBData(null, currentYear)
  1641. } else {
  1642. getGDLBData(currentXzqdm, currentYear)
  1643. }
  1644. })
  1645. }
  1646. let currentText = "" // 点击的文字
  1647. let currentYear = '' // 当前年份
  1648. let currentXzqdm = '' // 当前行政区代码
  1649. let yearData = [] // 全部的年份
  1650. let btnType = false // 上面行政区域状态
  1651. let dataSheng = null // 省数据
  1652. let dataShi = null // 市数据
  1653. let dataXian = null // 县数据
  1654. let btnMeg = 0 // 按钮的状态
  1655. // 请求耕地数据
  1656. function getGDLBData(num, year) {
  1657. let newNum = null;
  1658. if (num) {
  1659. newNum = num
  1660. } else {
  1661. newNum = 140000
  1662. }
  1663. currentXzqdm = newNum
  1664. var levelData;
  1665. $.ajax({
  1666. async: false,
  1667. url: globleUrl + '/dbms/specialStatistics/qualityLevel',
  1668. data: {
  1669. "xzqdm": newNum
  1670. },
  1671. datatype: 'json',
  1672. success: function (res) {
  1673. if (typeof res == 'string') {
  1674. levelData = eval("(" + res + ")")
  1675. } else {
  1676. levelData = res
  1677. }
  1678. if (levelData.code == 200) {
  1679. objList = levelData.data
  1680. if (num === undefined) {
  1681. dataSheng = levelData.data
  1682. for (i in objList) {
  1683. yearData.push(objList[i].YEAR)
  1684. }
  1685. }
  1686. let parmsDataPie = [] // 饼图数据
  1687. let parmsTotal = '' // 饼图数据总数
  1688. let paramsBar = [] // 行政区线图数据
  1689. // 判断是否点击行政区域
  1690. if (btnType) {
  1691. if (btnMeg == 1) {
  1692. if (currentYear != '') {
  1693. for (i in dataSheng) {
  1694. parmsDataPie = dataSheng[currentYear]
  1695. }
  1696. } else {
  1697. let btnMeg1Index = 0
  1698. for (i in dataSheng) {
  1699. btnMeg1Index++
  1700. if (btnMeg1Index == 1) {
  1701. parmsDataPie = dataSheng[i]
  1702. }
  1703. }
  1704. }
  1705. } else if (btnMeg == 2) {
  1706. if (currentYear != '') {
  1707. for (i in dataShi) {
  1708. parmsDataPie = dataShi[currentYear]
  1709. }
  1710. } else {
  1711. let btnMeg1Index = 0
  1712. for (i in dataSheng) {
  1713. btnMeg1Index++
  1714. if (btnMeg1Index == 1) {
  1715. parmsDataPie = dataShi[i]
  1716. }
  1717. }
  1718. }
  1719. } else if (btnMeg == 3) {
  1720. if (currentYear != '') {
  1721. for (i in dataXian) {
  1722. parmsDataPie = dataXian[currentYear]
  1723. }
  1724. } else {
  1725. let btnMeg1Index = 0
  1726. for (i in dataXian) {
  1727. btnMeg1Index++
  1728. if (btnMeg1Index == 1) {
  1729. parmsDataPie = dataXian[i]
  1730. }
  1731. }
  1732. }
  1733. }
  1734. } else {
  1735. if (currentYear === '' && num == undefined) {
  1736. let piedata = null
  1737. let pieIndex = 0
  1738. for (i in objList) {
  1739. pieIndex++
  1740. if (pieIndex == 1) {
  1741. piedata = objList[i]
  1742. }
  1743. }
  1744. parmsDataPie = piedata
  1745. } else if (currentYear != '' && num == undefined) {
  1746. for (i in objList) {
  1747. parmsDataPie = objList[year]
  1748. }
  1749. } else if (currentYear === '' && num) {
  1750. let pieIndex1 = 0
  1751. for (i in objList) {
  1752. pieIndex1++
  1753. if (pieIndex1 == 1) {
  1754. parmsDataPie = objList[i]
  1755. }
  1756. }
  1757. } else if (currentYear && num) {
  1758. for (i in objList) {
  1759. if (JSON.stringify(objList[i].XZQDATA) === "{}") {
  1760. if (currentYear == objList[i].YEAR) {
  1761. parmsDataPie = objList[i]
  1762. }
  1763. } else {
  1764. parmsDataPie = objList[currentYear]
  1765. }
  1766. }
  1767. }
  1768. btnType = false
  1769. }
  1770. parmsTotal = parmsDataPie.YDD + parmsDataPie.GDD + parmsDataPie.ZDD + parmsDataPie.DDD
  1771. echarPieFun(parmsDataPie, parmsTotal)
  1772. echartsLineBar()
  1773. let yearSpan = currentYear === '' ? yearData[0] : currentYear
  1774. dlDj(parmsDataPie, yearSpan)
  1775. }
  1776. },
  1777. error: function (err) {
  1778. console.log(err);
  1779. }
  1780. });
  1781. return levelData;
  1782. }
  1783. // 耕地质量行政区划统计分析柱状图
  1784. function dlDj(data, time) {
  1785. // 默认
  1786. // 点击年份
  1787. var Ydd = []
  1788. var Gdd = []
  1789. var Zdd = []
  1790. var Ddd = []
  1791. var YDDarr = [],
  1792. GDDarr = [],
  1793. ZDDarr = [],
  1794. DDDarr = []
  1795. var dataName = [] // x轴名称数据
  1796. let xData
  1797. setTimeout(() => {
  1798. xData = analysisList.map(item => {
  1799. return item.name
  1800. })
  1801. xzLineDataFun(data, time, xData, analysisList)
  1802. }, 10)
  1803. function xzLineDataFun(data, time, xData, analysisList) {
  1804. // 循环数据赋值盟市名字
  1805. if (JSON.stringify(data.XZQDATA) === "{}") {
  1806. if (!currentYear) {
  1807. // 优等地数据
  1808. let yddData = []
  1809. yddData.push(data.YDD)
  1810. Ydd.push({
  1811. dj: '优等地',
  1812. type: 'bar',
  1813. barWidth: '20%',
  1814. data: yddData,
  1815. itemStyle: {
  1816. color: levelColor[0]
  1817. }
  1818. })
  1819. dldjBar('优等地', time, '#containerClassLine1', Ydd, xData)
  1820. // 高等地数据
  1821. let gddData = []
  1822. gddData.push(data.GDD)
  1823. Gdd.push({
  1824. dj: '高等地',
  1825. type: 'bar',
  1826. barWidth: '20%',
  1827. data: gddData,
  1828. itemStyle: {
  1829. color: levelColor[1]
  1830. }
  1831. })
  1832. dldjBar('高等地', time, '#containerClassLine2', Gdd, xData)
  1833. // 中等地数据
  1834. let zddData = []
  1835. zddData.push(data.ZDD)
  1836. Zdd.push({
  1837. dj: '中等地',
  1838. type: 'bar',
  1839. barWidth: '20%',
  1840. data: zddData,
  1841. itemStyle: {
  1842. color: levelColor[2]
  1843. }
  1844. })
  1845. dldjBar('中等地', time, '#containerClassLine3', Zdd, xData)
  1846. // 低等地数据
  1847. let dddData = []
  1848. dddData.push(data.DDD)
  1849. Ddd.push({
  1850. dj: '低等地',
  1851. type: 'bar',
  1852. barWidth: '20%',
  1853. data: dddData,
  1854. itemStyle: {
  1855. color: levelColor[3]
  1856. }
  1857. })
  1858. dldjBar('低等地', time, '#containerClassLine4', Ddd, xData)
  1859. } else {
  1860. let yddData = []
  1861. yddData.push(dataXian.YDD)
  1862. Ydd.push({
  1863. dj: '优等地',
  1864. type: 'bar',
  1865. barWidth: '20%',
  1866. data: yddData,
  1867. itemStyle: {
  1868. color: levelColor[0]
  1869. }
  1870. })
  1871. dldjBar('优等地', time, '#containerClassLine1', Ydd, xData)
  1872. // 高等地数据
  1873. let gddData = []
  1874. gddData.push(dataXian.GDD)
  1875. Gdd.push({
  1876. dj: '高等地',
  1877. type: 'bar',
  1878. barWidth: '20%',
  1879. data: gddData,
  1880. itemStyle: {
  1881. color: levelColor[1]
  1882. }
  1883. })
  1884. dldjBar('高等地', time, '#containerClassLine2', Gdd, xData)
  1885. // 中等地数据
  1886. let zddData = []
  1887. zddData.push(dataXian.ZDD)
  1888. Zdd.push({
  1889. dj: '中等地',
  1890. type: 'bar',
  1891. barWidth: '20%',
  1892. data: zddData,
  1893. itemStyle: {
  1894. color: levelColor[2]
  1895. }
  1896. })
  1897. dldjBar('中等地', time, '#containerClassLine3', Zdd, xData)
  1898. // 低等地数据
  1899. let dddData = []
  1900. dddData.push(dataXian.DDD)
  1901. Ddd.push({
  1902. dj: '低等地',
  1903. type: 'bar',
  1904. barWidth: '20%',
  1905. data: dddData,
  1906. itemStyle: {
  1907. color: levelColor[3]
  1908. }
  1909. })
  1910. dldjBar('低等地', time, '#containerClassLine4', Ddd, xData)
  1911. }
  1912. } else {
  1913. if (!currentYear) {
  1914. for (s in data.XZQDATA) {
  1915. for (i in analysisList) {
  1916. if (analysisList[i].code == data.XZQDATA[s].XZQDM) {
  1917. data.XZQDATA[s].xzqName = analysisList[i].name
  1918. }
  1919. }
  1920. }
  1921. let xzqDataContainer = []
  1922. for (i in data.XZQDATA) {
  1923. xzqDataContainer.push(data.XZQDATA[i])
  1924. }
  1925. // 优等地数据
  1926. xzqDataContainer.sort(creatCompare("YDD"))
  1927. xzqDataContainer.map(item => {
  1928. YDDarr.push(item.YDD)
  1929. dataName.push(item.xzqName)
  1930. })
  1931. Ydd.push({
  1932. dj: '优等地',
  1933. type: 'bar',
  1934. barWidth: '20%',
  1935. data: YDDarr,
  1936. itemStyle: {
  1937. color: levelColor[0]
  1938. }
  1939. })
  1940. dldjBar('优等地', time, '#containerClassLine1', Ydd, dataName)
  1941. // 高等地数据
  1942. dataName = [] // 清空存储Y轴的数组
  1943. xzqDataContainer.sort(creatCompare("GDD"))
  1944. xzqDataContainer.map(item => {
  1945. GDDarr.push(item.GDD)
  1946. dataName.push(item.xzqName)
  1947. })
  1948. Gdd.push({
  1949. dj: '高等地',
  1950. type: 'bar',
  1951. barWidth: '20%',
  1952. data: GDDarr,
  1953. itemStyle: {
  1954. color: levelColor[1]
  1955. }
  1956. })
  1957. dldjBar('高等地', time, '#containerClassLine2', Gdd, dataName)
  1958. // 中等地数据
  1959. dataName = [] // 清空存储Y轴的数组
  1960. xzqDataContainer.sort(creatCompare("ZDD"))
  1961. xzqDataContainer.map(item => {
  1962. ZDDarr.push(item.ZDD)
  1963. dataName.push(item.xzqName)
  1964. })
  1965. Zdd.push({
  1966. dj: '中等地',
  1967. type: 'bar',
  1968. barWidth: '20%',
  1969. data: ZDDarr,
  1970. itemStyle: {
  1971. color: levelColor[2]
  1972. }
  1973. })
  1974. dldjBar('中等地', time, '#containerClassLine3', Zdd, dataName)
  1975. // 低等地数据
  1976. dataName = [] // 清空存储Y轴的数组
  1977. xzqDataContainer.sort(creatCompare("DDD"))
  1978. xzqDataContainer.map(item => {
  1979. DDDarr.push(item.DDD)
  1980. dataName.push(item.xzqName)
  1981. })
  1982. Ddd.push({
  1983. dj: '低等地',
  1984. type: 'bar',
  1985. barWidth: '20%',
  1986. data: DDDarr,
  1987. itemStyle: {
  1988. color: levelColor[3]
  1989. }
  1990. })
  1991. dldjBar('低等地', time, '#containerClassLine4', Ddd, dataName)
  1992. } else {
  1993. if (btnMeg == 1) {
  1994. for (s in dataSheng[currentYear].XZQDATA) {
  1995. for (i in analysisList) {
  1996. if (analysisList[i].code == dataSheng[currentYear].XZQDATA[s].XZQDM) {
  1997. dataSheng[currentYear].XZQDATA[s].xzqName = analysisList[i].name
  1998. }
  1999. }
  2000. }
  2001. let xzqDataContainer = []
  2002. for (i in dataSheng[currentYear].XZQDATA) {
  2003. xzqDataContainer.push(dataSheng[currentYear].XZQDATA[i])
  2004. }
  2005. shiXian(xzqDataContainer)
  2006. } else if (btnMeg == 2) {
  2007. for (s in dataShi[currentYear].XZQDATA) {
  2008. for (i in analysisList) {
  2009. if (analysisList[i].code == dataShi[currentYear].XZQDATA[s].XZQDM) {
  2010. dataShi[currentYear].XZQDATA[s].xzqName = analysisList[i].name
  2011. }
  2012. }
  2013. }
  2014. let xzqDataContainer = []
  2015. for (i in dataShi[currentYear].XZQDATA) {
  2016. xzqDataContainer.push(dataShi[currentYear].XZQDATA[i])
  2017. }
  2018. shiXian(xzqDataContainer)
  2019. } else if (btnMeg == 3) {
  2020. for (s in dataXian[currentYear].XZQDATA) {
  2021. for (i in analysisList) {
  2022. if (analysisList[i].code == dataXian[currentYear].XZQDATA[s].XZQDM) {
  2023. dataXian[currentYear].XZQDATA[s].xzqName = analysisList[i].name
  2024. }
  2025. }
  2026. }
  2027. let yddData1 = []
  2028. yddData1.push(dataXian.YDD)
  2029. Ydd.push({
  2030. dj: '优等地',
  2031. type: 'bar',
  2032. barWidth: '20%',
  2033. data: yddData1,
  2034. itemStyle: {
  2035. color: levelColor[0]
  2036. }
  2037. })
  2038. dldjBar('优等地', time, '#containerClassLine1', Ydd, xData)
  2039. // 高等地数据
  2040. let gddData1 = []
  2041. gddData1.push(dataXian.GDD)
  2042. Gdd.push({
  2043. dj: '高等地',
  2044. type: 'bar',
  2045. barWidth: '20%',
  2046. data: gddData1,
  2047. itemStyle: {
  2048. color: levelColor[1]
  2049. }
  2050. })
  2051. dldjBar('高等地', time, '#containerClassLine2', Gdd, xData)
  2052. // 中等地数据
  2053. let zddData1 = []
  2054. zddData1.push(dataXian.ZDD)
  2055. Zdd.push({
  2056. dj: '中等地',
  2057. type: 'bar',
  2058. barWidth: '20%',
  2059. data: zddData1,
  2060. itemStyle: {
  2061. color: levelColor[2]
  2062. }
  2063. })
  2064. dldjBar('中等地', time, '#containerClassLine3', Zdd, xData)
  2065. // 低等地数据
  2066. let dddData1 = []
  2067. dddData1.push(dataXian.DDD)
  2068. Ddd.push({
  2069. dj: '低等地',
  2070. type: 'bar',
  2071. barWidth: '20%',
  2072. data: dddData1,
  2073. itemStyle: {
  2074. color: levelColor[3]
  2075. }
  2076. })
  2077. dldjBar('低等地', time, '#containerClassLine4', Ddd, xData)
  2078. }
  2079. function shiXian(xzqDataContainer) {
  2080. // 优等地数据
  2081. xzqDataContainer.sort(creatCompare("YDD"))
  2082. xzqDataContainer.map(item => {
  2083. YDDarr.push(item.YDD)
  2084. dataName.push(item.xzqName)
  2085. })
  2086. Ydd.push({
  2087. dj: '优等地',
  2088. type: 'bar',
  2089. barWidth: '20%',
  2090. data: YDDarr,
  2091. itemStyle: {
  2092. color: levelColor[0]
  2093. }
  2094. })
  2095. dldjBar('优等地', time, '#containerClassLine1', Ydd, dataName)
  2096. // 高等地数据
  2097. dataName = [] // 清空存储Y轴的数组
  2098. xzqDataContainer.sort(creatCompare("GDD"))
  2099. xzqDataContainer.map(item => {
  2100. GDDarr.push(item.GDD)
  2101. dataName.push(item.xzqName)
  2102. })
  2103. Gdd.push({
  2104. dj: '高等地',
  2105. type: 'bar',
  2106. barWidth: '20%',
  2107. data: GDDarr,
  2108. itemStyle: {
  2109. color: levelColor[1]
  2110. }
  2111. })
  2112. dldjBar('高等地', time, '#containerClassLine2', Gdd, dataName)
  2113. // 中等地数据
  2114. dataName = [] // 清空存储Y轴的数组
  2115. xzqDataContainer.sort(creatCompare("ZDD"))
  2116. xzqDataContainer.map(item => {
  2117. ZDDarr.push(item.ZDD)
  2118. dataName.push(item.xzqName)
  2119. })
  2120. Zdd.push({
  2121. dj: '中等地',
  2122. type: 'bar',
  2123. barWidth: '20%',
  2124. data: ZDDarr,
  2125. itemStyle: {
  2126. color: levelColor[2]
  2127. }
  2128. })
  2129. dldjBar('中等地', time, '#containerClassLine3', Zdd, dataName)
  2130. // 低等地数据
  2131. dataName = [] // 清空存储Y轴的数组
  2132. xzqDataContainer.sort(creatCompare("DDD"))
  2133. xzqDataContainer.map(item => {
  2134. DDDarr.push(item.DDD)
  2135. dataName.push(item.xzqName)
  2136. })
  2137. Ddd.push({
  2138. dj: '低等地',
  2139. type: 'bar',
  2140. barWidth: '20%',
  2141. data: DDDarr,
  2142. itemStyle: {
  2143. color: levelColor[3]
  2144. }
  2145. })
  2146. dldjBar('低等地', time, '#containerClassLine4', Ddd, dataName)
  2147. }
  2148. }
  2149. }
  2150. }
  2151. $(".loading").hide();
  2152. }
  2153. // 画行政区划的柱图
  2154. function dldjBar(name, time, dom, echarBarData, xData) {
  2155. xData = xData.map(item=>{
  2156. if (!item) {
  2157. return '—'
  2158. }else{
  2159. return item
  2160. }
  2161. })
  2162. console.log(xData);
  2163. var mCharts1 = echarts.init(document.querySelector(dom))
  2164. let option = {
  2165. title: [{
  2166. text: name + "行政区分布",
  2167. textStyle: {
  2168. fontSize: 13,
  2169. },
  2170. left: 10,
  2171. }, {
  2172. text: time + "年份",
  2173. textStyle: {
  2174. fontSize: 8,
  2175. },
  2176. right: 28,
  2177. }],
  2178. tooltip: {
  2179. trigger: 'axis'
  2180. },
  2181. grid: {
  2182. left: '3%',
  2183. right: '4%',
  2184. bottom: '3%',
  2185. containLabel: true
  2186. },
  2187. toolbox: {
  2188. feature: {
  2189. saveAsImage: {}
  2190. }
  2191. },
  2192. yAxis: {
  2193. type: 'category',
  2194. boundaryGap: false,
  2195. data: xData,
  2196. axisLabel: {
  2197. inside: false,
  2198. textStyle: {
  2199. color: '#000',
  2200. fontSize: '10',
  2201. itemSize: ''
  2202. }
  2203. }
  2204. },
  2205. xAxis: {
  2206. type: 'value'
  2207. },
  2208. series: echarBarData
  2209. };
  2210. window.onresize = function () {
  2211. mCharts1.resize()
  2212. }
  2213. mCharts1.setOption(option)
  2214. }
  2215. // 耕地质量类别总量变化趋势图
  2216. function echartsLineBar() {
  2217. // #
  2218. let dataLineBar = []
  2219. if (btnType) {
  2220. if (btnMeg == 1) { // 点击
  2221. dataLineBar = dataSheng
  2222. } else if (btnMeg == 2) { // 点击市
  2223. dataLineBar = dataShi
  2224. } else if (btnMeg == 3) {
  2225. dataLineBar = dataXian
  2226. }
  2227. } else {
  2228. dataLineBar = objList
  2229. }
  2230. let mChartsLine = echarts.init(document.querySelector('#mychartsLine'))
  2231. var xAxis = [];
  2232. var series = [];
  2233. var series1 = [];
  2234. for (num in dataLineBar) {
  2235. xAxis.push(num)
  2236. series.push({
  2237. value: dataLineBar[num].GDZL,
  2238. itemStyle: {
  2239. color: 'rgb(79, 129, 189)'
  2240. }
  2241. })
  2242. series1.push({
  2243. value: dataLineBar[num].MJBH
  2244. })
  2245. }
  2246. var seriesList = [];
  2247. var xAxioList = [];
  2248. var levelIndex = -1
  2249. var levelArr = []
  2250. for (item in dataLineBar) {
  2251. levelArr.push(dataLineBar[item].YDD)
  2252. }
  2253. for (item in dataLineBar) {
  2254. levelArr.push(dataLineBar[item].GDD)
  2255. }
  2256. for (item in dataLineBar) {
  2257. levelArr.push(dataLineBar[item].ZDD)
  2258. }
  2259. for (item in dataLineBar) {
  2260. levelArr.push(dataLineBar[item].DDD)
  2261. }
  2262. for (item in dataLineBar) {
  2263. levelIndex++
  2264. seriesList.push({
  2265. type: 'line',
  2266. name: levelName[levelIndex],
  2267. data: arrTrans(4, levelArr)[levelIndex],
  2268. itemStyle: {
  2269. color: levelColor[levelIndex]
  2270. }
  2271. })
  2272. xAxioList.push(dataLineBar[item].YEAR)
  2273. }
  2274. seriesList.push({
  2275. name: '耕地总量',
  2276. type: 'bar',
  2277. data: series,
  2278. barWidth: 32,
  2279. markPoint: {
  2280. data: [{
  2281. type: 'max',
  2282. name: '最大值'
  2283. },
  2284. {
  2285. type: 'min',
  2286. name: '最小值'
  2287. }
  2288. ]
  2289. },
  2290. markLine: {
  2291. data: [{
  2292. type: 'average',
  2293. name: '平均值'
  2294. }]
  2295. }
  2296. }, {
  2297. name: '面积变化',
  2298. type: 'bar',
  2299. data: series1,
  2300. barWidth: 32,
  2301. markPoint: {
  2302. data: [{
  2303. type: 'max',
  2304. name: '最大值'
  2305. },
  2306. {
  2307. type: 'min',
  2308. name: '最小值'
  2309. }
  2310. ]
  2311. },
  2312. markLine: {
  2313. data: [{
  2314. type: 'average',
  2315. name: '平均值'
  2316. }]
  2317. }
  2318. })
  2319. levelName.push('耕地总量', '面积变化')
  2320. chartOption = {
  2321. color: globleConfig.color,
  2322. tooltip: {
  2323. trigger: 'axis',
  2324. formatter: function (data) {
  2325. return `
  2326. ${data[0].name}年<br />
  2327. ${data[0].seriesName}:${data[0].value}公顷<br />
  2328. ${data[1].seriesName}:${data[1].value}公顷<br />
  2329. ${data[2].seriesName}:${data[2].value}公顷<br />
  2330. ${data[3].seriesName}:${data[3].value}公顷<br />
  2331. ${data[4].seriesName}:${data[4].value}公顷<br />
  2332. ${data[5].seriesName}:${data[5].value}公顷<br />
  2333. `
  2334. }
  2335. },
  2336. grid: {
  2337. top: 90,
  2338. left: 85,
  2339. bottom: 60
  2340. },
  2341. legend: {
  2342. data: levelName,
  2343. orient: 'horizontal',
  2344. bottom: 0,
  2345. },
  2346. toolbox: {
  2347. show: true,
  2348. orient: 'vertical',
  2349. left: 'right',
  2350. top: 'center',
  2351. feature: {
  2352. mark: {
  2353. show: true
  2354. },
  2355. magicType: {
  2356. show: true,
  2357. type: ['line', 'bar']
  2358. },
  2359. restore: {
  2360. show: true
  2361. },
  2362. saveAsImage: {
  2363. show: true
  2364. }
  2365. }
  2366. },
  2367. calculable: true,
  2368. xAxis: [{
  2369. type: 'category',
  2370. boundaryGap: true,
  2371. data: xAxioList,
  2372. }],
  2373. yAxis: [{
  2374. type: 'value',
  2375. axisLine: {
  2376. show: true
  2377. },
  2378. axisTick: {
  2379. show: true
  2380. }
  2381. }],
  2382. series: seriesList
  2383. };
  2384. mChartsLine.setOption(chartOption)
  2385. if (chartOption) {
  2386. if (mChartsLine) {
  2387. mChartsLine = echarts.init(document.getElementById('mychartsLine'));
  2388. } else {
  2389. mChartsLine.clear();
  2390. }
  2391. mChartsLine.setOption(chartOption);
  2392. mChartsLine.on('click', function (params) {
  2393. // arableLandlevel(params.name, 2) // 点击年份
  2394. // resertEcharts(null, null, null, parseInt(params.name));
  2395. });
  2396. }
  2397. $(".loading").hide();
  2398. }
  2399. // 耕地质量构成饼状图
  2400. function echarPieFun(arableArr, total) {
  2401. let arableArr1 = [arableArr.YDD, arableArr.GDD, arableArr.ZDD, arableArr.DDD]
  2402. let pieData = []
  2403. let pieDataIndex = -1
  2404. arableArr1.map(item => {
  2405. pieDataIndex++
  2406. pieData.push({
  2407. value: item,
  2408. name: levelName[pieDataIndex],
  2409. label: {
  2410. fontSize: 8
  2411. },
  2412. itemStyle: {
  2413. color: levelColor[pieDataIndex]
  2414. }
  2415. })
  2416. })
  2417. var mCharts = echarts.init(document.querySelector('#containerPie'))
  2418. var option = {
  2419. title: {
  2420. text: '耕地质量构成 (单位:公顷)',
  2421. left: 'center',
  2422. textStyle: {
  2423. fontWeight: 'normal',
  2424. fontSize: 10,
  2425. },
  2426. bottom: 70,
  2427. right: 20
  2428. },
  2429. tooltip: {
  2430. trigger: 'item'
  2431. },
  2432. // tooltip: {
  2433. // formatter: function (data) {
  2434. // let bl = parseInt(data.data.value / total * 100) + '%'
  2435. // return `
  2436. // ${data.data.name} <br />
  2437. // 总量:${data.data.value} <br />
  2438. // 本级占比:${bl} <br />
  2439. // `
  2440. // }
  2441. // },
  2442. z: 10,
  2443. series: [{
  2444. name: '耕地质量构成',
  2445. type: 'pie',
  2446. radius: '50%',
  2447. data: pieData,
  2448. labelLine: {
  2449. show: true,
  2450. length: 8,
  2451. length2: 3
  2452. }
  2453. }],
  2454. };
  2455. // window.onresize = function () {
  2456. // mCharts.resize();
  2457. // }
  2458. // windowResizeFun()
  2459. window.onresize = function () {
  2460. mCharts.resize()
  2461. }
  2462. mCharts.setOption(option)
  2463. }