123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492 |
- import ollama
- import psycopg2
- import json
- import uuid
- import datetime
- from llm_model.query import query
- from psycopg2.extras import DictCursor
- import pandas as pd
- import time
- from app.utils.pinyin_utils import replace_word
- from app.common.word import target_word
- from app.common.res import res_success, res_error
- from app.utils.log_utils import logger
- import re
- from markdownify import markdownify
- # read_csv = pd.read_csv("E:\\siwei_ai\\poi.csv")
- # first_column = read_csv.iloc[:, 0]
- # poi_list = first_column.tolist()
- # # 将每个 POI 用双引号包裹,并用逗号拼接
- # poi_str = ",".join(f'"{poi}"' for poi in poi_list)
- # # 保存为 TXT 文件
- # with open("E:\\siwei_ai\\poi_list.txt", "w", encoding="utf-8") as file:
- # file.write(poi_str)
- # print("POI 列表已保存至 poi_list.txt(逗号分隔)")
- chat_history = "用户:你好,我是智能助手,请问有什么可以帮助您?\\n智能助手:好的,请问您有什么需求?"
- sys_xuanzhi = """请扮演文本提取工具,根据输入和聊天上下文信息,基于以下行政区划、选址点名称、因子选择和用地类型提取这句话中的关键信息,用户没有提及到行政区划和选址点名称则返回空值。提取到的结果请严格以json格式输出并保障寄送格式正确无误,
- 行政区划 = ['抱坡区','天涯区','崖州区','海棠区','吉阳区' ]
- 选址点名称 = ['南新中学宿舍',"三亚市人民医院-2号综合楼","三亚蜈支洲岛度假中心-医务所","润春堂药店","长春堂药店(荔枝沟路店)" ],
- 因子选择 = ["高程","坡度","永久基本农田","城镇开发边界内","生态保护红线","文化保护区","自然保护地","风景名胜区","国有使用权","河道管理线","水库","公益林","火葬场","垃圾处理场","污水处理场","高压线","变电站","古树","城市道路","主要出入口","文化活动设施","体育运动场所","排水","供水","燃气","电力","电信","十五分钟社区生活圈邻里中心","社区服务设施","零售商业场所","医疗卫生设施","幼儿园服务半径","小学服务半径","为老服务设施"],
- 用地类型 = ['园地','耕地','林地','草地','湿地','公共卫生用地','老年人社会福利用地','儿童社会福利用地','残疾人社会福利用地','其他社会福利用地','零售商业用地','批发市场用地','餐饮用地','旅馆用地','公用设施营业网点用地','娱乐用地','康体用地','一类工业用地','二类工业用地','广播电视设施用地','环卫用地','消防用地','干渠','水工设施用地','其他公用设施用地','公园绿地','防护绿地','广场用地','军事设施用地','使领馆用地','宗教用地','文物古迹用地','监教场所用地','殡葬用地','其他特殊用地','河流水面','湖泊水面','水库水面','坑塘水面','沟渠','冰川及常年积雪','渔业基础设施用海','增养殖用海','捕捞海域','工业用海','盐田用海','固体矿产用海','油气用海','可再生能源用海','海底电缆管道用海','港口用海','农业设施建设用地','工矿用地','畜禽养殖设施建设用地','水产养殖设施建设用地','城镇住宅用地','特殊用地','居住用地','绿地与开敞空间用地','水田','水浇地','旱地','果园','茶园','橡胶园','其他园地','乔木林地','竹林地','城镇社区服务设施用地','农村宅基地','农村社区服务设施用地','机关团体用地','科研用地','文化用地','教育用地','体育用地','医疗卫生用地','社会福利用地','商业用地','商务金融用地','二类农村宅基地','图书与展览用地','文化活动用地','高等教育用地','中等职业教育用地','体育训练用地','其他交通设施用地','供水用地','排水用地','供电用地','供燃气用地','供热用地','通信用地','邮政用地','医院用地','基层医疗卫生设施用地','田间道','盐碱地','沙地','裸土地','裸岩石砾地','村道用地','村庄内部道路用地','公共管理与公共服务用地','仓储用地','交通运输用地','公用设施用地','交通运输用海','航运用海','路桥隧道用海','风景旅游用海','文体休闲娱乐用海','军事用海','其他特殊用海','空闲地','田坎','港口码头用地','管道运输用地','城市轨道交通用地','城镇道路用地','交通场站用地','一类城镇住宅用地','二类城镇住宅用地','三类城镇住宅用地','一类农村宅基地','商业服务业用地','三类工业用地','一类物流仓储用地','二类物流仓储用地','三类物流仓储用地','盐田','对外交通场站用地','公共交通场站用地','社会停车场用地','中小学用地','幼儿园用地','其他教育用地','体育场馆用地','灌木林地','其他林地','天然牧草地','人工牧草地','其他草地','森林沼泽','灌丛沼泽','沼泽草地','其他沼泽地','沿海滩涂','内陆滩涂','红树林地','乡村道路用地','种植设施建设用地','娱乐康体用地','其他商业服务业用地','工业用地','采矿用地','物流仓储用地','储备库用地','铁路用地','公路用地','机场用地'],
- landType是用地类型
- districtName是行政区划
- poi是选址点名称
- area是用地面积,单位为亩,min是最小面积,max是最大面积,
- factors是因子选择
- buffer是缓冲距离,单位为米
- 其他公里、千米的单位转换为米
- 输出json格式数据如下:
- {
- "districtName": "",
- "poi":"",
- "buffer":30,
- "landType": "居住用地",
- "area": {
- "min": 10,
- "max": 100
- },
- "factors": [
- {
- "type": "医疗卫生设施",
- "condition": "lt",
- "value": "500"
- },
- {
- "type": "永久基本农田",
- "condition": "not_intersect"
- },
- {
- "type": "火葬场",
- "condition": "gt",
- "value": "1000"
- },
- {
- "type": "幼儿园服务半径",
- "condition": "lt",
- "value": "1000"
- },
- {
- "type": "小学服务半径",
- "condition": "lt",
- "value": "1000"
- },
- ]
- }
- json中"condition"的值为"gt"、"lt"、"get"、"let"、"between","not_intersect"、"intersect"、"not_contain"、"contain"、"between"
- """
- sys_question = """请扮演问答工具,对用户输入信息进行回答,请严格以markdown格式输出并保障寄送格式正确无误"""
- # 连接数据库
- conn = psycopg2.connect(
- dbname="real3d",
- user="postgres",
- password="postgis",
- # host="192.168.100.30",
- host="192.168.60.2",
- port="5432"
- )
- # 清除聊天记录
- def clear_chat_history():
- global chat_history
- chat_history = ""
- return chat_history
- def extract_json(text):
- json_marker = "```json"
- start_pos = text.find(json_marker)
- if start_pos == -1:
- return None
-
- # 从```json后面开始找JSON内容
- json_start = text.find('{', start_pos + len(json_marker))
- if json_start == -1:
- return None
-
- end_marker = "```"
- end_pos = text.find(end_marker, json_start)
- if end_pos == -1:
- json_end = text.rfind('}', json_start)
- else:
- json_end = text.rfind('}', json_start, end_pos)
-
- if json_end == -1:
- return None
-
- # 提取JSON字符串并打印出来看看内容
- json_str = text[json_start:json_end + 1]
- print("提取的JSON字符串:")
- print(json_str)
- json_str = json_str.replace("\xa0", " ")
- print(json_str)
- try:
- return json.loads(json_str)
- except json.JSONDecodeError as e:
- print("JSON解析错误:", e)
- # 打印出错误位置附近的内容
- error_pos = e.pos
- print("错误位置附近的内容:")
- print(json_str[max(0, error_pos-20):min(len(json_str), error_pos+20)])
- return None
- def create_chat(msg, type_ai):
- # msg = data['msg']
- # type = data['type']
- if type_ai == 'selectLand':
- # 同音字替换
- msg = replace_word(msg, target_word)
- words_to_replace1 = ["爆破", "爆坡", "鲍坡"]
- for word in words_to_replace1:
- msg = msg.replace(word, "抱坡")
- print(msg)
- # 调用大模型解析
- # 这里调用大模型,并返回解析结果
- start = time.time()
- res = update_chat_history(msg)
- print(res) # 打印生成的回复
- end = time.time()
- print("解析时间:", end - start)
- # 解析结果返回给前端
- # 未找到相关数据提示
- prompt = "根据提供的信息,您的表述不够清晰明确,为更好的达到您的选址需求,请重新描述您的选址条件。"
- addtress = ['抱坡区', '天涯区', '崖州区', '海棠区', '吉阳区']
- poi_list = ['南新中学宿舍', '三亚市人民医院-2号综合楼', '三亚蜈支洲岛度假中心-医务所', '润春堂药店', '长春堂药店(荔枝沟路店)']
- land = ['园地', '耕地', '林地', '草地', '湿地', '公共卫生用地', '老年人社会福利用地', '儿童社会福利用地', '残疾人社会福利用地', '其他社会福利用地', '零售商业用地', '批发市场用地', '餐饮用地', '旅馆用地', '公用设施营业网点用地', '娱乐用地', '康体用地', '一类工业用地', '二类工业用地', '广播电视设施用地', '环卫用地', '消防用地', '干渠', '水工设施用地', '其他公用设施用地', '公园绿地', '防护绿地', '广场用地', '军事设施用地', '使领馆用地', '宗教用地', '文物古迹用地', '监教场所用地', '殡葬用地', '其他特殊用地', '河流水面', '湖泊水面', '水库水面', '坑塘水面', '沟渠', '冰川及常年积雪', '渔业基础设施用海', '增养殖用海', '捕捞海域', '工业用海', '盐田用海', '固体矿产用海', '油气用海', '可再生能源用海', '海底电缆管道用海', '港口用海', '农业设施建设用地', '工矿用地', '畜禽养殖设施建设用地', '水产养殖设施建设用地', '城镇住宅用地', '特殊用地', '居住用地', '绿地与开敞空间用地', '水田', '水浇地', '旱地', '果园', '茶园', '橡胶园', '其他园地', '乔木林地', '竹林地', '城镇社区服务设施用地', '农村宅基地', '农村社区服务设施用地', '机关团体用地', '科研用地', '文化用地', '教育用地', '体育用地', '医疗卫生用地', '社会福利用地', '商业用地', '商务金融用地', '二类农村宅基地', '图书与展览用地',
- '文化活动用地', '高等教育用地', '中等职业教育用地', '体育训练用地', '其他交通设施用地', '供水用地', '排水用地', '供电用地', '供燃气用地', '供热用地', '通信用地', '邮政用地', '医院用地', '基层医疗卫生设施用地', '田间道', '盐碱地', '沙地', '裸土地', '裸岩石砾地', '村道用地', '村庄内部道路用地', '公共管理与公共服务用地', '仓储用地', '交通运输用地', '公用设施用地', '交通运输用海', '航运用海', '路桥隧道用海', '风景旅游用海', '文体休闲娱乐用海', '军事用海', '其他特殊用海', '空闲地', '田坎', '港口码头用地', '管道运输用地', '城市轨道交通用地', '城镇道路用地', '交通场站用地', '一类城镇住宅用地', '二类城镇住宅用地', '三类城镇住宅用地', '一类农村宅基地', '商业服务业用地', '三类工业用地', '一类物流仓储用地', '二类物流仓储用地', '三类物流仓储用地', '盐田', '对外交通场站用地', '公共交通场站用地', '社会停车场用地', '中小学用地', '幼儿园用地', '其他教育用地', '体育场馆用地', '灌木林地', '其他林地', '天然牧草地', '人工牧草地', '其他草地', '森林沼泽', '灌丛沼泽', '沼泽草地', '其他沼泽地', '沿海滩涂', '内陆滩涂', '红树林地', '乡村道路用地', '种植设施建设用地', '娱乐康体用地', '其他商业服务业用地', '工业用地', '采矿用地', '物流仓储用地', '储备库用地', '铁路用地', '公路用地', '机场用地']
- # json_res = res.replace("json", "")
- # json_res = json_res.replace("```", "")
- # 使用正则表达式提取<think>标签之间的内容
- match = re.search(r'<think>(.*?)</think>', res, re.DOTALL)
- if match:
- think_content = match.group(1)
- think_content = think_content.replace("\n", "")
- think_content = markdownify(think_content) # 转换为 Markdown
- # print(think_content)
- else:
- print("没有找到<think>标签内容。")
- # 使用这个函数处理你的json_res
- json_res = extract_json(res)
- print(json_res) # 打印生成的回复
- # if json_data:
- # districtName = json_data["districtName"]
- # else:
- # print("无法提取有效的JSON数据")
- if json_res != "未找到相关数据":
- # try:
- print(type(json_res)) # 检查 json_res 的类型
- districtName = json_res["districtName"]
- landType = json_res["landType"]
- poi = json_res["poi"]
- # if landType != "未找到相关数据" and landType != "" and districtName != "未找到相关数据"and districtName != "":
- if landType in land and( districtName in addtress or poi in poi_list):
- json_res = jsonResToDict(json_res, poi, think_content)
- # print(json_res)
- else:
- json_res = prompt
- json_res = res_error(json_res, "selectLand", "error1")
- # except:
- # json_res = prompt
- # json_res = res_error(json_res, "selectLand", "error2")
- else:
- json_res = prompt
- json_res = res_error(json_res, "selectLand", "error3")
- return json_res
- elif type_ai == 'answer':
- # json_res = route_query(msg)
- # json_res = jsonResToDict_questions(json_res)
- # print(json_res) # 打印生成的回复
- json_res = update_chat_history_simple(msg)
- json_res = res_success(json_res, "answer", "success")
- print(json_res) # 打印生成的回复
- return json_res
- # 智能选址
- def update_chat_history(user_message):
- global chat_history # 使用全局变量以便更新
- prompt = chat_history + "\\n用户:" + user_message
- # 生成回复,并加入聊天上下文
- res = ollama.generate(
- # model="qwen2.5:3b",
- model="deepseek-r1:7b",
- stream=False,
- system=sys_xuanzhi,
- prompt=prompt,
- options={"temperature": 0, "num_ctx": 32000, },
- keep_alive=-1
- )
- # 获取机器人回复
- bot_message = res["response"]
- # 更新聊天历史
- # chat_history += "\\n智能助手:" + bot_message
- # 返回机器人的回复
- return bot_message
- # 将大模型解析的结果转换为选址需要的数据格式
- def jsonResToDict(json_res, poi,think_content):
- # 1.查询选址范围信息
- # 位置点为空,利用行政区划选址
- if poi == "":
- print("位置点为空,利用行政区划选址")
- ewkt = getAiDistrict(json_res["districtName"])
- # 位置点不为空,利用位置点选址
- else:
- ewkt = getPoiArea(json_res["poi"],json_res["buffer"])
- print("位置点不为空,利用位置点选址")
- # 2.保存选址范围信息
- geomId = saveGeom(ewkt)
- # 3.获取用地类型信息
- landType = json_res["landType"]
- landType = getLandType(landType, "YDYHFLDM")
- # 4.获取模板信息
- factorTemplates = getTemplateByCode(landType)
- # TODO 以哪个因子列表为准,模版和因子个数怎么匹配
- now = datetime.datetime.now()
- formatted_time = now.strftime("%Y%m%d%H%M%S")
- res = {
- "xzmj": 1500,
- "xmmc": "规划选址项目_"+formatted_time,
- "jsdw": "建设单位",
- "ydxz_bsm": landType,
- "ydmjbegin": json_res["area"]["min"],
- "ydmjend": json_res["area"]["max"],
- "geomId": geomId,
- "yxyz": [],
- # TODO: 循环遍历
- # "yxyz": [
- # {
- # "id": "259e5bbaab434dbfb9c679bd44d4bfa4",
- # "name": "幼儿园服务半径",
- # "bsm": "TB_YEY",
- # "conditionInfo": {
- # "spatial_type": "distance",
- # "default": "lt",
- # "hasValue": true,
- # "defaultValue": "300",
- # "unit": "米",
- # "clip": false
- # }
- # }
- # ],
- # "useMultiple": json_res["useMultiple"],
- "useLandType": True,
- # "multipleDistance": json_res["multipleDistance"]
- }
- # 循环遍历输入因子
- factors = json_res["factors"]
- input_factors = {}
- for factor in factors:
- factorInfo = getFactorByName(factor["type"])
- if factorInfo == None:
- continue
- factorId = factorInfo["id"]
- factorBsm = factorInfo["bsm"]
- conditionInfo = factorInfo["condition_info"]
- conditionObj = json.loads(conditionInfo)
- defaultValue = '0'
- default = 'lt'
- if "value" in factor:
- defaultValue = str(factor["value"])
- if "condition" in factor:
- default = factor["condition"]
- # if defaultValue == '':
- # defaultValue = '0'
- factor_info = {
- "id": factorId,
- "name": factor["type"],
- "bsm": factorBsm,
- "conditionInfo": {
- "spatial_type": conditionObj["spatial_type"],
- "default": default,
- "hasValue": conditionObj["hasValue"],
- "defaultValue": defaultValue,
- "unit": conditionObj["unit"],
- "clip": conditionObj["clip"]
- }
- }
- input_factors[factor_info["id"]] = factor_info
- # 循环遍历模板
- # 记录已经添加的因子 ID
- added_factor_ids = set()
- # 首先处理模板
- for factorTemplate in factorTemplates:
- factorId = factorTemplate["id"]
- factorTemplate["conditionInfo"] = json.loads(
- factorTemplate["conditionInfo"])
- res["yxyz"].append(factorTemplate)
- added_factor_ids.add(factorId) # 记录已添加的因子 ID
- # 然后检查 input_factors 并添加未在模板中的因子
- for factor_id, factor_info in input_factors.items():
- if factor_id not in added_factor_ids:
- res["yxyz"].append(factor_info)
- resObj = {}
- resObj["data"] = res
- resObj["code"] = 200
- resObj["think"] = think_content
- resObj["type"] = "selectLand"
- return resObj
- # 获取因子信息
- def getFactorByName(name):
- with conn.cursor(cursor_factory=DictCursor) as cur:
- sql = "SELECT * FROM base.t_fzss_fzxz_factor WHERE name = %s"
- complete_sql = cur.mogrify(sql, (name,)).decode('utf-8')
- logger.info(f"Executing SQL: {complete_sql}")
- cur.execute(sql, (name,))
- res = cur.fetchone()
- return res
- # 获取选址范围信息
- def getAiDistrict(name):
- with conn.cursor(cursor_factory=DictCursor) as cur:
- sql = "SELECT public.st_asewkt(geom) as geom FROM base.t_fzss_fzxz_ai_district WHERE name = %s"
- complete_sql = cur.mogrify(sql, (name,)).decode('utf-8')
- logger.info(f"Executing SQL: {complete_sql}")
- cur.execute(sql, (name,))
- res = cur.fetchone()
- return res["geom"]
- # 获取位置点信息区域
- def getPoiArea(name, buffer):
- with conn.cursor(cursor_factory=DictCursor) as cur:
- # SQL query with LIKE and buffer
- sql = """
- SELECT public.st_asewkt(public.st_buffer(geom::public.geography, %s)) as geom
- FROM vector.poi
- WHERE name LIKE %s
- """
- # Use % for LIKE query, adding % around the name parameter
- like_name = f"%{name}%"
-
- # Format the query
- complete_sql = cur.mogrify(sql, (buffer, like_name)).decode('utf-8')
- logger.info(f"Executing SQL: {complete_sql}")
-
- # Execute the query
- cur.execute(sql, (buffer, like_name))
- res = cur.fetchone()
- return res["geom"]
- # 保存选址范围信息
- def saveGeom(ewkt):
- new_uuid = str(uuid.uuid4()) # 生成一个新的 UUID
- from_type = 3
- with conn.cursor() as cur:
- sql = "INSERT INTO base.t_fzss_zhxz_file(id,geom,from_type,create_time,area) VALUES (%s,public.st_geomfromewkt(%s),%s,now(),public.st_area(public.st_geomfromewkt(%s)::public.geography))"
- complete_sql = cur.mogrify(
- sql, (new_uuid, ewkt, from_type, ewkt)).decode('utf-8')
- logger.info(f"Executing SQL: {complete_sql}")
- cur.execute(sql, (new_uuid, ewkt, from_type, ewkt))
- conn.commit()
- return new_uuid
- # 获取用地类型信息
- def getLandType(landName, fzbs):
- with conn.cursor(cursor_factory=DictCursor) as cur:
- sql = "SELECT dm,mc,fzbs FROM base.t_fzss_fzxz_dict WHERE mc = %s and fzbs=%s"
- complete_sql = cur.mogrify(sql, (landName, fzbs)).decode('utf-8')
- logger.info(f"Executing SQL: {complete_sql}")
- cur.execute(sql, (landName, fzbs))
- res = cur.fetchone()
- return res["dm"]
- # 获取内置模板信息
- def getTemplateByCode(code):
- with conn.cursor(cursor_factory=DictCursor) as cur:
- sql = 'SELECT factor_id as id,factor_name as name,factor_bsm as bsm,condition_info as "conditionInfo" FROM base.t_fzss_fzxz_factor_temp WHERE land_type_code = %s'
- complete_sql = cur.mogrify(sql, (code,)).decode('utf-8')
- logger.info(f"Executing SQL: {complete_sql}")
- cur.execute(sql, (code,))
- res = cur.fetchall()
- # 将查询结果转换为字典列表
- result_list = [dict(row) for row in res]
- return result_list
- # 简单知识问答,未关联本地知识库
- def update_chat_history_simple(user_message):
- global chat_history # 使用全局变量以便更新
- prompt = chat_history + "\\n用户:" + user_message
- # 生成回复,并加入聊天上下文
- res = ollama.generate(
- model="deepseek-r1:1.5b",
- stream=False,
- system=sys_question,
- prompt=prompt,
- options={"temperature": 0, "num_ctx": 32000, },
- keep_alive=-1
- )
- # 获取机器人回复
- bot_message = res["response"] + "感谢您的提问,四维智能助手将竭诚为您解答。"
- # 更新聊天历史
- chat_history += "\\n智能助手:" + bot_message
- # 返回机器人的回复
- return bot_message
- def route_query(msg):
- response = query(msg)
- # print(response)
- # if response:
- # resObj = {}
- # resObj["data"] = response
- # resObj["code"] = 200
- # resObj["type"] = "answer"
- # return resObj
- # return {"error": "Something went wrong"}, 400
- return response
|