chat_service.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403
  1. import ollama
  2. import psycopg2
  3. import json
  4. import uuid
  5. import datetime
  6. from llm_model.query import query
  7. from psycopg2.extras import DictCursor
  8. import pandas as pd
  9. from app.utils.pinyin_utils import replace_word
  10. from app.common.word import target_word
  11. from app.common.res import res_success, res_error
  12. from app.utils.log_utils import logger
  13. read_csv = pd.read_csv("E:\\siwei_ai\\poi.csv")
  14. first_column = read_csv.iloc[:, 0]
  15. poi_list = first_column.tolist()
  16. chat_history = "用户:你好,我是智能助手,请问有什么可以帮助您?\\n智能助手:好的,请问您有什么需求?"
  17. sys_xuanzhi = """请扮演文本提取工具,根据输入和聊天上下文信息,基于以下行政区划、选址点名称、因子选择和用地类型提取这句话中的关键信息,提取到的结果请严格以json格式字符串输出并保障寄送格式正确无误,
  18. 行政区划 = ['抱坡区','天涯区','崖州区','海棠区','吉阳区' ]
  19. 选址点名称 = {poi_list},
  20. 因子选择 = ["高程","坡度","永久基本农田","城镇开发边界内","生态保护红线","文化保护区","自然保护地","风景名胜区","国有使用权","河道管理线","水库","公益林","火葬场","垃圾处理场","污水处理场","高压线","变电站","古树","城市道路","主要出入口","文化活动设施","体育运动场所","排水","供水","燃气","电力","电信","十五分钟社区生活圈邻里中心","社区服务设施","零售商业场所","医疗卫生设施","幼儿园服务半径","小学服务半径","为老服务设施"],
  21. 用地类型 = ['园地','耕地','林地','草地','湿地','公共卫生用地','老年人社会福利用地','儿童社会福利用地','残疾人社会福利用地','其他社会福利用地','零售商业用地','批发市场用地','餐饮用地','旅馆用地','公用设施营业网点用地','娱乐用地','康体用地','一类工业用地','二类工业用地','广播电视设施用地','环卫用地','消防用地','干渠','水工设施用地','其他公用设施用地','公园绿地','防护绿地','广场用地','军事设施用地','使领馆用地','宗教用地','文物古迹用地','监教场所用地','殡葬用地','其他特殊用地','河流水面','湖泊水面','水库水面','坑塘水面','沟渠','冰川及常年积雪','渔业基础设施用海','增养殖用海','捕捞海域','工业用海','盐田用海','固体矿产用海','油气用海','可再生能源用海','海底电缆管道用海','港口用海','农业设施建设用地','工矿用地','畜禽养殖设施建设用地','水产养殖设施建设用地','城镇住宅用地','特殊用地','居住用地','绿地与开敞空间用地','水田','水浇地','旱地','果园','茶园','橡胶园','其他园地','乔木林地','竹林地','城镇社区服务设施用地','农村宅基地','农村社区服务设施用地','机关团体用地','科研用地','文化用地','教育用地','体育用地','医疗卫生用地','社会福利用地','商业用地','商务金融用地','二类农村宅基地','图书与展览用地','文化活动用地','高等教育用地','中等职业教育用地','体育训练用地','其他交通设施用地','供水用地','排水用地','供电用地','供燃气用地','供热用地','通信用地','邮政用地','医院用地','基层医疗卫生设施用地','田间道','盐碱地','沙地','裸土地','裸岩石砾地','村道用地','村庄内部道路用地','公共管理与公共服务用地','仓储用地','交通运输用地','公用设施用地','交通运输用海','航运用海','路桥隧道用海','风景旅游用海','文体休闲娱乐用海','军事用海','其他特殊用海','空闲地','田坎','港口码头用地','管道运输用地','城市轨道交通用地','城镇道路用地','交通场站用地','一类城镇住宅用地','二类城镇住宅用地','三类城镇住宅用地','一类农村宅基地','商业服务业用地','三类工业用地','一类物流仓储用地','二类物流仓储用地','三类物流仓储用地','盐田','对外交通场站用地','公共交通场站用地','社会停车场用地','中小学用地','幼儿园用地','其他教育用地','体育场馆用地','灌木林地','其他林地','天然牧草地','人工牧草地','其他草地','森林沼泽','灌丛沼泽','沼泽草地','其他沼泽地','沿海滩涂','内陆滩涂','红树林地','乡村道路用地','种植设施建设用地','娱乐康体用地','其他商业服务业用地','工业用地','采矿用地','物流仓储用地','储备库用地','铁路用地','公路用地','机场用地'],
  22. landType是用地类型
  23. districtName是行政区划
  24. poi是选址点名称
  25. area是用地大小,单位统一转换为亩
  26. factors是因子选择
  27. 其他公里、千米的单位转换为米
  28. 输出json格式数据如下:
  29. {
  30.     "districtName": "",
  31.     "poi":"",
  32. "landType": "居住用地",
  33.     "area": {
  34.         "min": 30,
  35.         "max": 50
  36.     },
  37.     "factors": [
  38.         {
  39.             "type": "医疗卫生设施",
  40.             "condition": "lt",
  41.             "value": "500"
  42.         },
  43.         {
  44.             "type": "永久基本农田",
  45.             "condition": "not_intersect"
  46.         },
  47.         {
  48.             "type": "火葬场",
  49.             "condition": "gt",
  50.             "value": "1000"
  51.         },
  52. {
  53.             "type": "幼儿园服务半径",
  54.             "condition": "lt",
  55.             "value": "1000"
  56.         },
  57. {
  58.             "type": "小学服务半径",
  59.             "condition": "lt",
  60.             "value": "1000"
  61.         },
  62.     ]
  63. }
  64. json中"condition"的值为"gt"、"lt"、"get"、"let"、"between","not_intersect"、"intersect"、"not_contain"、"contain"、"between"
  65. """
  66. sys_question = """请扮演问答工具,对用户输入信息进行回答,请严格以markdown格式输出并保障寄送格式正确无误"""
  67. # 连接数据库
  68. conn = psycopg2.connect(
  69. dbname="real3d",
  70. user="postgres",
  71. password="postgis",
  72. # host="192.168.100.30",
  73. host="192.168.60.2",
  74. port="5432"
  75. )
  76. # 清除聊天记录
  77. def clear_chat_history():
  78. global chat_history
  79. chat_history = ""
  80. return chat_history
  81. def create_chat(msg, type):
  82. # msg = data['msg']
  83. # type = data['type']
  84. if type == 'selectLand':
  85. # 同音字替换
  86. msg = replace_word(msg, target_word)
  87. words_to_replace1 = ["爆破", "爆坡", "鲍坡"]
  88. for word in words_to_replace1:
  89. msg = msg.replace(word, "抱坡")
  90. print(msg)
  91. # 调用大模型解析
  92. # 这里调用大模型,并返回解析结果
  93. res = update_chat_history(msg)
  94. print(res) # 打印生成的回复
  95. # 未找到相关数据提示
  96. prompt = "根据提供的信息,您的表述不够清晰明确,为更好的达到您的选址需求,请重新描述您的选址条件。"
  97. addtress = ['抱坡区', '天涯区', '崖州区', '海棠区', '吉阳区']
  98. land = ['园地', '耕地', '林地', '草地', '湿地', '公共卫生用地', '老年人社会福利用地', '儿童社会福利用地', '残疾人社会福利用地', '其他社会福利用地', '零售商业用地', '批发市场用地', '餐饮用地', '旅馆用地', '公用设施营业网点用地', '娱乐用地', '康体用地', '一类工业用地', '二类工业用地', '广播电视设施用地', '环卫用地', '消防用地', '干渠', '水工设施用地', '其他公用设施用地', '公园绿地', '防护绿地', '广场用地', '军事设施用地', '使领馆用地', '宗教用地', '文物古迹用地', '监教场所用地', '殡葬用地', '其他特殊用地', '河流水面', '湖泊水面', '水库水面', '坑塘水面', '沟渠', '冰川及常年积雪', '渔业基础设施用海', '增养殖用海', '捕捞海域', '工业用海', '盐田用海', '固体矿产用海', '油气用海', '可再生能源用海', '海底电缆管道用海', '港口用海', '农业设施建设用地', '工矿用地', '畜禽养殖设施建设用地', '水产养殖设施建设用地', '城镇住宅用地', '特殊用地', '居住用地', '绿地与开敞空间用地', '水田', '水浇地', '旱地', '果园', '茶园', '橡胶园', '其他园地', '乔木林地', '竹林地', '城镇社区服务设施用地', '农村宅基地', '农村社区服务设施用地', '机关团体用地', '科研用地', '文化用地', '教育用地', '体育用地', '医疗卫生用地', '社会福利用地', '商业用地', '商务金融用地', '二类农村宅基地', '图书与展览用地',
  99. '文化活动用地', '高等教育用地', '中等职业教育用地', '体育训练用地', '其他交通设施用地', '供水用地', '排水用地', '供电用地', '供燃气用地', '供热用地', '通信用地', '邮政用地', '医院用地', '基层医疗卫生设施用地', '田间道', '盐碱地', '沙地', '裸土地', '裸岩石砾地', '村道用地', '村庄内部道路用地', '公共管理与公共服务用地', '仓储用地', '交通运输用地', '公用设施用地', '交通运输用海', '航运用海', '路桥隧道用海', '风景旅游用海', '文体休闲娱乐用海', '军事用海', '其他特殊用海', '空闲地', '田坎', '港口码头用地', '管道运输用地', '城市轨道交通用地', '城镇道路用地', '交通场站用地', '一类城镇住宅用地', '二类城镇住宅用地', '三类城镇住宅用地', '一类农村宅基地', '商业服务业用地', '三类工业用地', '一类物流仓储用地', '二类物流仓储用地', '三类物流仓储用地', '盐田', '对外交通场站用地', '公共交通场站用地', '社会停车场用地', '中小学用地', '幼儿园用地', '其他教育用地', '体育场馆用地', '灌木林地', '其他林地', '天然牧草地', '人工牧草地', '其他草地', '森林沼泽', '灌丛沼泽', '沼泽草地', '其他沼泽地', '沿海滩涂', '内陆滩涂', '红树林地', '乡村道路用地', '种植设施建设用地', '娱乐康体用地', '其他商业服务业用地', '工业用地', '采矿用地', '物流仓储用地', '储备库用地', '铁路用地', '公路用地', '机场用地']
  100. json_res = res.replace("json", "")
  101. json_res = json_res.replace("```", "")
  102. if json_res != "未找到相关数据":
  103. try:
  104. json_res = json.loads(json_res)
  105. districtName = json_res["districtName"]
  106. landType = json_res["landType"]
  107. poi = json_res["poi"]
  108. # if landType != "未找到相关数据" and landType != "" and districtName != "未找到相关数据"and districtName != "":
  109. if landType in land and districtName in addtress:
  110. json_res = jsonResToDict(json_res, poi)
  111. # print(json_res)
  112. else:
  113. json_res = prompt
  114. json_res = res_error(json_res, "selectLand", "error")
  115. except:
  116. json_res = prompt
  117. json_res = res_error(json_res, "selectLand", "error")
  118. else:
  119. json_res = prompt
  120. json_res = res_error(json_res, "selectLand", "error")
  121. return json_res
  122. elif type == 'answer':
  123. # json_res = route_query(msg)
  124. # json_res = jsonResToDict_questions(json_res)
  125. # print(json_res) # 打印生成的回复
  126. json_res = update_chat_history_simple(msg)
  127. json_res = res_success(json_res, "answer", "success")
  128. print(json_res) # 打印生成的回复
  129. return json_res
  130. # 智能选址
  131. def update_chat_history(user_message):
  132. global chat_history # 使用全局变量以便更新
  133. prompt = chat_history + "\\n用户:" + user_message
  134. # 生成回复,并加入聊天上下文
  135. res = ollama.generate(
  136. model="qwen2.5:7b",
  137. stream=False,
  138. system=sys_xuanzhi,
  139. prompt=prompt,
  140. options={"temperature": 0, "num_ctx": 32000, },
  141. keep_alive=-1
  142. )
  143. # 获取机器人回复
  144. bot_message = res["response"]
  145. # 更新聊天历史
  146. chat_history += "\\n智能助手:" + bot_message
  147. # 返回机器人的回复
  148. return bot_message
  149. # 将大模型解析的结果转换为选址需要的数据格式
  150. def jsonResToDict(json_res, poi):
  151. # 1.查询选址范围信息
  152. # 位置点为空,利用行政区划选址
  153. if poi == "":
  154. print("位置点为空,利用行政区划选址")
  155. ewkt = getAiDistrict(json_res["districtName"])
  156. # 位置点不为空,利用位置点选址
  157. else:
  158. ewkt = getPoiArea(json_res["poi"],json_res["buffer"])
  159. print("位置点不为空,利用位置点选址")
  160. # 2.保存选址范围信息
  161. geomId = saveGeom(ewkt)
  162. # 3.获取用地类型信息
  163. landType = json_res["landType"]
  164. landType = getLandType(landType, "YDYHFLDM")
  165. # 4.获取模板信息
  166. factorTemplates = getTemplateByCode(landType)
  167. # TODO 以哪个因子列表为准,模版和因子个数怎么匹配
  168. now = datetime.datetime.now()
  169. formatted_time = now.strftime("%Y%m%d%H%M%S")
  170. res = {
  171. "xzmj": 1500,
  172. "xmmc": "规划选址项目_"+formatted_time,
  173. "jsdw": "建设单位",
  174. "ydxz_bsm": landType,
  175. "ydmjbegin": json_res["area"]["min"],
  176. "ydmjend": json_res["area"]["max"],
  177. "geomId": geomId,
  178. "yxyz": [],
  179. # TODO: 循环遍历
  180. # "yxyz": [
  181. # {
  182. # "id": "259e5bbaab434dbfb9c679bd44d4bfa4",
  183. # "name": "幼儿园服务半径",
  184. # "bsm": "TB_YEY",
  185. # "conditionInfo": {
  186. # "spatial_type": "distance",
  187. # "default": "lt",
  188. # "hasValue": true,
  189. # "defaultValue": "300",
  190. # "unit": "米",
  191. # "clip": false
  192. # }
  193. # }
  194. # ],
  195. # "useMultiple": json_res["useMultiple"],
  196. "useLandType": True,
  197. # "multipleDistance": json_res["multipleDistance"]
  198. }
  199. # 循环遍历输入因子
  200. factors = json_res["factors"]
  201. input_factors = {}
  202. for factor in factors:
  203. factorInfo = getFactorByName(factor["type"])
  204. if factorInfo == None:
  205. continue
  206. factorId = factorInfo["id"]
  207. factorBsm = factorInfo["bsm"]
  208. conditionInfo = factorInfo["condition_info"]
  209. conditionObj = json.loads(conditionInfo)
  210. defaultValue = '0'
  211. default = 'lt'
  212. if "value" in factor:
  213. defaultValue = str(factor["value"])
  214. if "condition" in factor:
  215. default = factor["condition"]
  216. # if defaultValue == '':
  217. # defaultValue = '0'
  218. factor_info = {
  219. "id": factorId,
  220. "name": factor["type"],
  221. "bsm": factorBsm,
  222. "conditionInfo": {
  223. "spatial_type": conditionObj["spatial_type"],
  224. "default": default,
  225. "hasValue": conditionObj["hasValue"],
  226. "defaultValue": defaultValue,
  227. "unit": conditionObj["unit"],
  228. "clip": conditionObj["clip"]
  229. }
  230. }
  231. input_factors[factor_info["id"]] = factor_info
  232. # 循环遍历模板
  233. # 记录已经添加的因子 ID
  234. added_factor_ids = set()
  235. # 首先处理模板
  236. for factorTemplate in factorTemplates:
  237. factorId = factorTemplate["id"]
  238. factorTemplate["conditionInfo"] = json.loads(
  239. factorTemplate["conditionInfo"])
  240. res["yxyz"].append(factorTemplate)
  241. added_factor_ids.add(factorId) # 记录已添加的因子 ID
  242. # 然后检查 input_factors 并添加未在模板中的因子
  243. for factor_id, factor_info in input_factors.items():
  244. if factor_id not in added_factor_ids:
  245. res["yxyz"].append(factor_info)
  246. resObj = {}
  247. resObj["data"] = res
  248. resObj["code"] = 200
  249. resObj["type"] = "selectLand"
  250. return resObj
  251. # 获取因子信息
  252. def getFactorByName(name):
  253. with conn.cursor(cursor_factory=DictCursor) as cur:
  254. sql = "SELECT * FROM base.t_fzss_fzxz_factor WHERE name = %s"
  255. complete_sql = cur.mogrify(sql, (name,)).decode('utf-8')
  256. logger.info(f"Executing SQL: {complete_sql}")
  257. cur.execute(sql, (name,))
  258. res = cur.fetchone()
  259. return res
  260. # 获取选址范围信息
  261. def getAiDistrict(name):
  262. with conn.cursor(cursor_factory=DictCursor) as cur:
  263. sql = "SELECT public.st_asewkt(geom) as geom FROM base.t_fzss_fzxz_ai_district WHERE name = %s"
  264. complete_sql = cur.mogrify(sql, (name,)).decode('utf-8')
  265. logger.info(f"Executing SQL: {complete_sql}")
  266. cur.execute(sql, (name,))
  267. res = cur.fetchone()
  268. return res["geom"]
  269. # 获取位置点信息区域
  270. def getPoiArea(name, buffer):
  271. with conn.cursor(cursor_factory=DictCursor) as cur:
  272. sql = "SELECT public.st_asewkt(geom) as geom FROM base.t_fzss_fzxz_ai_district WHERE name = %s"
  273. sql="SELECT public.st_asewkt(public.st_buffer(geom::public.geography,%s)) FROM vector.poi WHERE name like '%%s%'"
  274. complete_sql = cur.mogrify(sql, (name,buffer,)).decode('utf-8')
  275. logger.info(f"Executing SQL: {complete_sql}")
  276. cur.execute(sql, (name,buffer,))
  277. res = cur.fetchone()
  278. return res["geom"]
  279. # 保存选址范围信息
  280. def saveGeom(ewkt):
  281. new_uuid = str(uuid.uuid4()) # 生成一个新的 UUID
  282. from_type = 3
  283. with conn.cursor() as cur:
  284. sql = "INSERT INTO base.t_fzss_zhxz_file(id,geom,from_type,create_time,area) VALUES (%s,public.st_geomfromewkt(%s),%s,now(),public.st_area(public.st_geomfromewkt(%s)::public.geography))"
  285. complete_sql = cur.mogrify(
  286. sql, (new_uuid, ewkt, from_type, ewkt)).decode('utf-8')
  287. logger.info(f"Executing SQL: {complete_sql}")
  288. cur.execute(sql, (new_uuid, ewkt, from_type, ewkt))
  289. conn.commit()
  290. return new_uuid
  291. # 获取用地类型信息
  292. def getLandType(landName, fzbs):
  293. with conn.cursor(cursor_factory=DictCursor) as cur:
  294. sql = "SELECT dm,mc,fzbs FROM base.t_fzss_fzxz_dict WHERE mc = %s and fzbs=%s"
  295. complete_sql = cur.mogrify(sql, (landName, fzbs)).decode('utf-8')
  296. logger.info(f"Executing SQL: {complete_sql}")
  297. cur.execute(sql, (landName, fzbs))
  298. res = cur.fetchone()
  299. return res["dm"]
  300. # 获取内置模板信息
  301. def getTemplateByCode(code):
  302. with conn.cursor(cursor_factory=DictCursor) as cur:
  303. sql = 'SELECT factor_id as id,factor_name as name,factor_bsm as bsm,condition_info as "conditionInfo" FROM base.t_fzss_fzxz_factor_temp WHERE land_type_code = %s'
  304. complete_sql = cur.mogrify(sql, (code,)).decode('utf-8')
  305. logger.info(f"Executing SQL: {complete_sql}")
  306. cur.execute(sql, (code,))
  307. res = cur.fetchall()
  308. # 将查询结果转换为字典列表
  309. result_list = [dict(row) for row in res]
  310. return result_list
  311. # 简单知识问答,未关联本地知识库
  312. def update_chat_history_simple(user_message):
  313. global chat_history # 使用全局变量以便更新
  314. prompt = chat_history + "\\n用户:" + user_message
  315. # 生成回复,并加入聊天上下文
  316. res = ollama.generate(
  317. model="qwen2.5:7b",
  318. stream=False,
  319. system=sys_question,
  320. prompt=prompt,
  321. options={"temperature": 0, "num_ctx": 32000, },
  322. keep_alive=-1
  323. )
  324. # 获取机器人回复
  325. bot_message = res["response"] + "感谢您的提问,四维智能助手将竭诚为您解答。"
  326. # 更新聊天历史
  327. chat_history += "\\n智能助手:" + bot_message
  328. # 返回机器人的回复
  329. return bot_message
  330. def route_query(msg):
  331. response = query(msg)
  332. # print(response)
  333. # if response:
  334. # resObj = {}
  335. # resObj["data"] = response
  336. # resObj["code"] = 200
  337. # resObj["type"] = "answer"
  338. # return resObj
  339. # return {"error": "Something went wrong"}, 400
  340. return response