app.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348
  1. from flask import Flask, render_template, request, jsonify
  2. import psycopg2
  3. from psycopg2.extras import DictCursor
  4. import logging
  5. import ollama
  6. import json
  7. import datetime
  8. import uuid
  9. app = Flask(__name__)
  10. # 配置日志
  11. logging.basicConfig(level=logging.INFO)
  12. logger = logging.getLogger(__name__)
  13. # 连接数据库
  14. conn = psycopg2.connect(
  15. dbname="real3d",
  16. user="postgres",
  17. password="postgis",
  18. host="192.168.100.30",
  19. port="5432"
  20. )
  21. # 后台接口
  22. @app.route("/")
  23. def home():
  24. return render_template('index.html')
  25. # 接收消息,大模型解析
  26. @app.route('/msg', methods=['POST'])
  27. def inputMsg():
  28. # 从请求中获取JSON数据
  29. data = request.get_json()
  30. # 检查是否接收到数据
  31. if not data:
  32. return jsonify({"error": "No data received"}), 400
  33. # 打印接收到的消息
  34. print(data['msg'])
  35. msg = data['msg']
  36. # 调用大模型解析
  37. # 这里调用大模型,并返回解析结果
  38. # 生成提示信息
  39. # 定义输入信息变量
  40. # 生成提示信息
  41. # 生成提示信息
  42. prompt = f"""请扮演文本提取工具,把这句话:"{msg}",基于以下因子选择、选址范围和用地类型提取其对应的相关数据,提取结果请严格将json格式字符串输出并保障寄送格式正确无误,
  43. 选址范围 = ['抱坡区','天涯区','崖州区','海棠区','吉阳区',"青浦区","静安区","浦东新区","松江区','海淀区', '昌平区', '朝阳区' ],
  44. 因子选择 = [
  45. "高程",
  46. "坡度",
  47. "永久基本农田",
  48. "城镇开发边界内",
  49. "生态保护红线",
  50. "文化保护区",
  51. "自然保护地",
  52. "风景名胜区",
  53. "国有使用权",
  54. "河道管理线",
  55. "水库",
  56. "公益林",
  57. "火葬场",
  58. "垃圾处理场",
  59. "污水处理场",
  60. "高压线",
  61. "变电站",
  62. "古树",
  63. "城市道路",
  64. "主要出入口",
  65. "文化活动设施",
  66. "体育运动场所",
  67. "排水",
  68. "供水",
  69. "燃气",
  70. "电力",
  71. "电信",
  72. "十五分钟社区生活圈邻里中心",
  73. "社区服务设施",
  74. "零售商业场所",
  75. "医疗卫生设施",
  76. "幼儿园服务半径",
  77. "小学服务半径",
  78. "为老服务设施"
  79. ]
  80. 用地类型=['园地', '耕地', '林地', '草地', '湿地', '公共卫生用地', '老年人社会福利用地', '儿童社会福利用地', '残疾人社会福利用地', '其他社会福利用地', '零售商业用地', '批发市场用地', '餐饮用地', '旅馆用地', '公用设施营业网点用地', '娱乐用地', '康体用地', '一类工业用地', '二类工业用地', '广播电视设施用地', '环卫用地', '消防用地', '干渠', '水工设施用地', '其他公用设施用地', '公园绿地', '防护绿地', '广场用地', '军事设施用地', '使领馆用地', '宗教用地', '文物古迹用地', '监教场所用地', '殡葬用地', '其他特殊用地', '河流水面', '湖泊水面', '水库水面', '坑塘水面', '沟渠', '冰川及常年积雪', '渔业基础设施用海', '增养殖用海', '捕捞海域', '工业用海', '盐田用海', '固体矿产用海', '油气用海', '可再生能源用海', '海底电缆管道用海', '港口用海', '农业设施建设用地', '耕地', '园地', '林地', '工矿用地', '畜禽养殖设施建设用地', '水产养殖设施建设用地', '城镇住宅用地', '草地', '湿地', '留白用地', '陆地水域', '游憩用海', '特殊用海', '特殊用地', '其他海域', '居住用地', '绿地与开敞空间用地', '水田', '水浇地', '旱地', '果园', '茶园', '橡胶园', '其他园地', '乔木林地', '竹林地', '城镇社区服务设施用地', '农村宅基地', '农村社区服务设施用地', '机关团体用地', '科研用地', '文化用地', '教育用地', '体育用地', '医疗卫生用地', '社会福利用地', '商业用地', '商务金融用地', '二类农村宅基地', '图书与展览用地', '文化活动用地', '高等教育用地', '中等职业教育用地', '体育训练用地', '其他交通设施用地', '供水用地', '排水用地', '供电用地', '供燃气用地', '供热用地', '通信用地', '邮政用地', '医院用地', '基层医疗卫生设施用地', '田间道', '盐碱地', '沙地', '裸土地', '裸岩石砾地', '村道用地', '村庄内部道路用地', '渔业用海', '工矿通信用海', '其他土地', '公共管理与公共服务用地', '仓储用地', '交通运输用地', '公用设施用地', '交通运输用海', '航运用海', '路桥隧道用海', '风景旅游用海', '文体休闲娱乐用海', '军事用海', '其他特殊用海', '空闲地', '田坎', '港口码头用地', '管道运输用地', '城市轨道交通用地', '城镇道路用地', '交通场站用地', '一类城镇住宅用地', '二类城镇住宅用地', '三类城镇住宅用地', '一类农村宅基地', '商业服务业用地', '三类工业用地', '一类物流仓储用地', '二类物流仓储用地', '三类物流仓储用地', '盐田', '对外交通场站用地', '公共交通场站用地', '社会停车场用地', '中小学用地', '幼儿园用地', '其他教育用地', '体育场馆用地', '灌木林地', '其他林地', '天然牧草地', '人工牧草地', '其他草地', '森林沼泽', '灌丛沼泽', '沼泽草地', '其他沼泽地', '沿海滩涂', '内陆滩涂', '红树林地', '乡村道路用地', '种植设施建设用地', '娱乐康体用地', '其他商业服务业用地', '工业用地', '采矿用地', '物流仓储用地', '储备库用地', '铁路用地', '公路用地', '机场用地']
  81. landType是用地类型
  82. districtName是选址范围
  83. area是用地大小,单位统一转换为亩
  84. factors.type是因子选择
  85. 其他公里、千米的单位转换为米
  86. 输出的json格式数据如下:
  87. {{
  88. "districtName": "抱坡区",
  89. "landType": "耕地",
  90. <<<<<<< HEAD
  91.     "area": {{
  92.         "min": 30,
  93.         "max": 50
  94.     }},
  95.     "factors": [
  96.         {{
  97.             "type": "医疗卫生设施",
  98.             "condition": "小于",
  99.             "value": "500"
  100.         }},
  101.         {{
  102.             "type": "永久基本农田",
  103.             "condition": "不相交"
  104.         }},
  105.         {{
  106.             "type": "火葬场",
  107.             "condition": "大于",
  108.             "value": "1000"
  109.         }},
  110. {{
  111.             "type": "幼儿园服务半径",
  112.             "condition": "小于",
  113.             "value": "1000"
  114.         }},
  115. {{
  116.             "type": "小学服务半径",
  117.             "condition": "小于",
  118.             "value": "1000"
  119.         }},
  120.     ]
  121. }}
  122. factors中type是因子名称,需与因子选择中的信息保持一致
  123. json中"condition"的值为"gt"、"lt"、"get"、"let"、"between","not_intersect"、"intersect"、"not_contain"、"contain"、"between"
  124. json中"type"的值如果为"医院"则需改为"医疗卫生设施"
  125. =======
  126. "area": {{
  127. "min": 30,
  128. "max": 50
  129. }},
  130. "factors": [
  131. {{
  132. "type": "水库",
  133. "condition": "大于",
  134. "value": "100"
  135. }},
  136. {{
  137. "type": "永久基本农田",
  138. "condition": "不相交"
  139. }},
  140. {{
  141. "type": "城镇开发边界内",
  142. "condition": "包含"
  143. }},
  144. {{
  145. "type": "医疗卫生设施",
  146. "condition": "小于",
  147. "value": "500"
  148. }},
  149. ]
  150. }}
  151. 把json中"condition"的值改为"gt"、"lt"、"get"、"let"、"between","not_intersect"、"intersect"、"not_contain"、"contain"、"between"
  152. >>>>>>> 9c82d2f7fdcb99e45510a207fab90680cff9ce6a
  153. """
  154. try:
  155. res = ollama.generate(
  156. model="qwen2:7b",
  157. stream=False,
  158. prompt=prompt,
  159. options={"temperature": 0},
  160. format="json",
  161. keep_alive=-1
  162. )
  163. print(res["response"])
  164. except Exception as e:
  165. print(f"生成过程中出现错误: {e}")
  166. json_res = res["response"]
  167. json_res = json.loads(json_res)
  168. # 组织成选址需要的数据格式
  169. json_res = jsonResToDict(json_res)
  170. # 返回响应
  171. return jsonify(json_res)
  172. # 将大模型解析的结果转换为选址需要的数据格式
  173. def jsonResToDict(json_res):
  174. # 1.查询选址范围信息
  175. districtName = json_res["districtName"]
  176. ewkt = getAiDistrict(districtName)
  177. # 2.保存选址范围信息
  178. geomId = saveGeom(ewkt)
  179. # 3.获取用地类型信息
  180. landType = json_res["landType"]
  181. landType = getLandType(landType, "YDYHFLDM")
  182. # 4.获取模板信息
  183. factorTemplates = getTemplateByCode(landType)
  184. # TODO 以哪个因子列表为准,模版和因子个数怎么匹配
  185. now = datetime.datetime.now()
  186. formatted_time = now.strftime("%Y%m%d%H%M%S")
  187. res = {
  188. "xzmj": 1500,
  189. "xmmc": "规划选址项目_"+formatted_time,
  190. "jsdw": "建设单位",
  191. "ydxz_bsm": landType,
  192. "ydmjbegin": json_res["area"]["min"],
  193. "ydmjend": json_res["area"]["max"],
  194. "geomId": geomId,
  195. "yxyz": [],
  196. # TODO: 循环遍历
  197. # "yxyz": [
  198. # {
  199. # "id": "259e5bbaab434dbfb9c679bd44d4bfa4",
  200. # "name": "幼儿园服务半径",
  201. # "bsm": "TB_YEY",
  202. # "conditionInfo": {
  203. # "spatial_type": "distance",
  204. # "default": "lt",
  205. # "hasValue": true,
  206. # "defaultValue": "300",
  207. # "unit": "米",
  208. # "clip": false
  209. # }
  210. # }
  211. # ],
  212. # "useMultiple": json_res["useMultiple"],
  213. # "useLandType": json_res["useLandType"],
  214. # "multipleDistance": json_res["multipleDistance"]
  215. }
  216. # 循环遍历输入因子
  217. factors = json_res["factors"]
  218. input_factors = {}
  219. for factor in factors:
  220. factorInfo = getFactorByName(factor["type"])
  221. if factorInfo == None:
  222. continue
  223. factorId = factorInfo["id"]
  224. factorBsm = factorInfo["bsm"]
  225. conditionInfo = factorInfo["condition_info"]
  226. conditionObj = json.loads(conditionInfo)
  227. factor_info = {
  228. "id": factorId,
  229. "name": factor["type"],
  230. "bsm": factorBsm,
  231. "conditionInfo": {
  232. "spatial_type": conditionObj["spatial_type"],
  233. "default": factor["condition"],
  234. "hasValue": conditionObj["hasValue"],
  235. "defaultValue": factor["value"],
  236. "unit": conditionObj["unit"],
  237. "clip": conditionObj["clip"]
  238. }
  239. }
  240. input_factors[factor_info["id"]] = factor_info
  241. # 循环遍历模板
  242. for factorTemplate in factorTemplates:
  243. factorId = factorTemplate["id"]
  244. if factorId in input_factors:
  245. res["yxyz"].append(input_factors[factorId])
  246. else:
  247. factorTemplate["conditionInfo"]=json.loads(factorTemplate["conditionInfo"])
  248. res["yxyz"].append(factorTemplate)
  249. return res
  250. # 获取因子信息
  251. def getFactorByName(name):
  252. with conn.cursor(cursor_factory=DictCursor) as cur:
  253. sql = "SELECT * FROM base.t_fzss_fzxz_factor WHERE name = %s"
  254. complete_sql = cur.mogrify(sql, (name,)).decode('utf-8')
  255. logger.info(f"Executing SQL: {complete_sql}")
  256. cur.execute(sql, (name,))
  257. res = cur.fetchone()
  258. return res
  259. # 获取内置模板信息
  260. def getTemplateByCode(code):
  261. with conn.cursor(cursor_factory=DictCursor) as cur:
  262. sql = 'SELECT factor_id as id,factor_name as name,factor_bsm as bsm,condition_info as "conditionInfo" FROM base.t_fzss_fzxz_factor_temp WHERE land_type_code = %s'
  263. complete_sql = cur.mogrify(sql, (code,)).decode('utf-8')
  264. logger.info(f"Executing SQL: {complete_sql}")
  265. cur.execute(sql, (code,))
  266. res = cur.fetchall()
  267. # 将查询结果转换为字典列表
  268. result_list = [dict(row) for row in res]
  269. return result_list
  270. # 获取选址范围信息
  271. def getAiDistrict(name):
  272. with conn.cursor(cursor_factory=DictCursor) as cur:
  273. sql = "SELECT public.st_asewkt(geom) as geom FROM base.t_fzss_fzxz_ai_district WHERE name = %s"
  274. complete_sql = cur.mogrify(sql, (name,)).decode('utf-8')
  275. logger.info(f"Executing SQL: {complete_sql}")
  276. cur.execute(sql, (name,))
  277. res = cur.fetchone()
  278. return res["geom"]
  279. # 保存选址范围信息
  280. def saveGeom(ewkt):
  281. new_uuid = str(uuid.uuid4()) # 生成一个新的 UUID
  282. from_type = 3
  283. with conn.cursor() as cur:
  284. sql = "INSERT INTO base.t_fzss_zhxz_file(id,geom,from_type,create_time,area) VALUES (%s,public.st_geomfromewkt(%s),%s,now(),public.st_area(public.st_geomfromewkt(%s)::public.geography))"
  285. complete_sql = cur.mogrify(
  286. sql, (new_uuid, ewkt, from_type, ewkt)).decode('utf-8')
  287. logger.info(f"Executing SQL: {complete_sql}")
  288. cur.execute(sql, (new_uuid, ewkt, from_type, ewkt))
  289. conn.commit()
  290. return new_uuid
  291. # 获取用地类型信息
  292. def getLandType(landName, fzbs):
  293. with conn.cursor(cursor_factory=DictCursor) as cur:
  294. sql = "SELECT dm,mc,fzbs FROM base.t_fzss_fzxz_dict WHERE mc = %s and fzbs=%s"
  295. complete_sql = cur.mogrify(sql, (landName, fzbs)).decode('utf-8')
  296. logger.info(f"Executing SQL: {complete_sql}")
  297. cur.execute(sql, (landName, fzbs))
  298. res = cur.fetchone()
  299. return res["dm"]
  300. # getTemplateByCode("08")
  301. # getAiDistrict("抱坡区")
  302. # ewkt="SRID=4326;POLYGON ((109.568515723151 18.2729002407864, 109.564270326708 18.2607742953866, 109.580087492139 18.2571512198688, 109.588461804591 18.2570597503377, 109.58884305979 18.2645363088176, 109.582107142538 18.2732736518031, 109.568515723151 18.2729002407864))"
  303. # saveGeom(ewkt)
  304. # getFactorByName("幼儿园服务半径")
  305. if __name__ == '__main__':
  306. # app.run()
  307. app.run(host='0.0.0.0')