app.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326
  1. from flask import Flask, render_template, request, jsonify
  2. from flask_cors import CORS
  3. import psycopg2
  4. from psycopg2.extras import DictCursor
  5. import logging
  6. import ollama
  7. import json
  8. import datetime
  9. import uuid
  10. app = Flask(__name__)
  11. CORS(app)
  12. # 配置日志
  13. logging.basicConfig(level=logging.INFO)
  14. logger = logging.getLogger(__name__)
  15. # 连接数据库
  16. conn = psycopg2.connect(
  17. dbname="real3d",
  18. user="postgres",
  19. password="postgis",
  20. # host="192.168.100.30",
  21. host="192.168.60.2",
  22. port="5432"
  23. )
  24. # 后台接口
  25. @app.route("/")
  26. def home():
  27. return render_template('index.html')
  28. # 后台接口
  29. @app.route("/hello")
  30. def hello():
  31. return "Hello, World!"
  32. # 接收消息,大模型解析
  33. @app.route('/msg', methods=['POST'])
  34. def inputMsg():
  35. # 从请求中获取JSON数据
  36. data = request.get_json()
  37. # 检查是否接收到数据
  38. if not data:
  39. return jsonify({"error": "No data received"}), 400
  40. # 打印接收到的消息
  41. print(data['msg'])
  42. msg = data['msg']
  43. # 调用大模型解析
  44. # 这里调用大模型,并返回解析结果
  45. # 生成提示信息
  46. # 定义输入信息变量
  47. # 生成提示信息
  48. # 生成提示信息
  49. prompt = f"""请扮演文本提取工具,把这句话:"{msg}",基于以下因子选择、选址范围和用地类型提取其对应的相关数据,提取结果请严格将json格式字符串输出并保障寄送格式正确无误,
  50. 选址范围 = ['抱坡区','天涯区','崖州区','海棠区','吉阳区'],
  51. 因子选择 = [
  52. "高程",
  53. "坡度",
  54. "永久基本农田",
  55. "城镇开发边界内",
  56. "生态保护红线",
  57. "文化保护区",
  58. "自然保护地",
  59. "风景名胜区",
  60. "国有使用权",
  61. "河道管理线",
  62. "水库",
  63. "公益林",
  64. "火葬场",
  65. "垃圾处理场",
  66. "污水处理场",
  67. "高压线",
  68. "变电站",
  69. "古树",
  70. "城市道路",
  71. "主要出入口",
  72. "文化活动设施",
  73. "体育运动场所",
  74. "排水",
  75. "供水",
  76. "燃气",
  77. "电力",
  78. "电信",
  79. "十五分钟社区生活圈邻里中心",
  80. "社区服务设施",
  81. "零售商业场所",
  82. "医疗卫生设施",
  83. "幼儿园服务半径",
  84. "小学服务半径",
  85. "为老服务设施"
  86. ]
  87. 用地类型=['园地', '耕地', '林地', '草地', '湿地', '公共卫生用地', '老年人社会福利用地', '儿童社会福利用地', '残疾人社会福利用地', '其他社会福利用地', '零售商业用地', '批发市场用地', '餐饮用地', '旅馆用地', '公用设施营业网点用地', '娱乐用地', '康体用地', '一类工业用地', '二类工业用地', '广播电视设施用地', '环卫用地', '消防用地', '干渠', '水工设施用地', '其他公用设施用地', '公园绿地', '防护绿地', '广场用地', '军事设施用地', '使领馆用地', '宗教用地', '文物古迹用地', '监教场所用地', '殡葬用地', '其他特殊用地', '河流水面', '湖泊水面', '水库水面', '坑塘水面', '沟渠', '冰川及常年积雪', '渔业基础设施用海', '增养殖用海', '捕捞海域', '工业用海', '盐田用海', '固体矿产用海', '油气用海', '可再生能源用海', '海底电缆管道用海', '港口用海', '农业设施建设用地', '耕地', '园地', '林地', '工矿用地', '畜禽养殖设施建设用地', '水产养殖设施建设用地', '城镇住宅用地', '草地', '湿地', '留白用地', '陆地水域', '游憩用海', '特殊用海', '特殊用地', '其他海域', '居住用地', '绿地与开敞空间用地', '水田', '水浇地', '旱地', '果园', '茶园', '橡胶园', '其他园地', '乔木林地', '竹林地', '城镇社区服务设施用地', '农村宅基地', '农村社区服务设施用地', '机关团体用地', '科研用地', '文化用地', '教育用地', '体育用地', '医疗卫生用地', '社会福利用地', '商业用地', '商务金融用地', '二类农村宅基地', '图书与展览用地', '文化活动用地', '高等教育用地', '中等职业教育用地', '体育训练用地', '其他交通设施用地', '供水用地', '排水用地', '供电用地', '供燃气用地', '供热用地', '通信用地', '邮政用地', '医院用地', '基层医疗卫生设施用地', '田间道', '盐碱地', '沙地', '裸土地', '裸岩石砾地', '村道用地', '村庄内部道路用地', '渔业用海', '工矿通信用海', '其他土地', '公共管理与公共服务用地', '仓储用地', '交通运输用地', '公用设施用地', '交通运输用海', '航运用海', '路桥隧道用海', '风景旅游用海', '文体休闲娱乐用海', '军事用海', '其他特殊用海', '空闲地', '田坎', '港口码头用地', '管道运输用地', '城市轨道交通用地', '城镇道路用地', '交通场站用地', '一类城镇住宅用地', '二类城镇住宅用地', '三类城镇住宅用地', '一类农村宅基地', '商业服务业用地', '三类工业用地', '一类物流仓储用地', '二类物流仓储用地', '三类物流仓储用地', '盐田', '对外交通场站用地', '公共交通场站用地', '社会停车场用地', '中小学用地', '幼儿园用地', '其他教育用地', '体育场馆用地', '灌木林地', '其他林地', '天然牧草地', '人工牧草地', '其他草地', '森林沼泽', '灌丛沼泽', '沼泽草地', '其他沼泽地', '沿海滩涂', '内陆滩涂', '红树林地', '乡村道路用地', '种植设施建设用地', '娱乐康体用地', '其他商业服务业用地', '工业用地', '采矿用地', '物流仓储用地', '储备库用地', '铁路用地', '公路用地', '机场用地']
  88. landType是用地类型
  89. districtName是选址范围
  90. area是用地大小,单位统一转换为亩
  91. factors.type是因子选择
  92. 其他公里、千米的单位转换为米
  93. 默认输出的json格式数据如下:
  94. {{
  95. "districtName": "抱坡区",
  96. "landType": "耕地",
  97. "area": {{
  98. "min": 30,
  99. "max": 50
  100. }},
  101. "factors": [
  102. {{
  103. "type": "水库",
  104. "condition": "大于",
  105. "value": "100"
  106. }},
  107. {{
  108. "type": "永久基本农田",
  109. "condition": "不相交",
  110. "value": "0"
  111. }},
  112. {{
  113. "type": "城镇开发边界内",
  114. "condition": "包含",
  115. "value": "0"
  116. }},
  117. {{
  118. "type": "医疗卫生设施",
  119. "condition": "小于",
  120. "value": "500"
  121. }},
  122. ]
  123. }}
  124. 把json中"condition"的值改为"gt"、"lt"、"get"、"let"、"between","not_intersect"、"intersect"、"not_contain"、"contain"、"between"
  125. """
  126. try:
  127. res = ollama.generate(
  128. model="qwen2:7b",
  129. # model="gemma2:27b",
  130. stream=False,
  131. prompt=prompt,
  132. options={"temperature": 0},
  133. format="json",
  134. keep_alive=-1
  135. )
  136. print(res["response"])
  137. except Exception as e:
  138. print(f"生成过程中出现错误: {e}")
  139. json_res = res["response"]
  140. json_res = json.loads(json_res)
  141. # 组织成选址需要的数据格式
  142. json_res = jsonResToDict(json_res)
  143. # 返回响应
  144. return jsonify(json_res)
  145. # 将大模型解析的结果转换为选址需要的数据格式
  146. def jsonResToDict(json_res):
  147. # 1.查询选址范围信息
  148. districtName = json_res["districtName"]
  149. ewkt = getAiDistrict(districtName)
  150. # 2.保存选址范围信息
  151. geomId = saveGeom(ewkt)
  152. # 3.获取用地类型信息
  153. landType = json_res["landType"]
  154. landType = getLandType(landType, "YDYHFLDM")
  155. # 4.获取模板信息
  156. factorTemplates = getTemplateByCode(landType)
  157. # TODO 以哪个因子列表为准,模版和因子个数怎么匹配
  158. now = datetime.datetime.now()
  159. formatted_time = now.strftime("%Y%m%d%H%M%S")
  160. res = {
  161. "xzmj": 1500,
  162. "xmmc": "聊天选址项目_"+formatted_time,
  163. "jsdw": "建设单位",
  164. "ydxz_bsm": landType,
  165. "ydmjbegin": json_res["area"]["min"],
  166. "ydmjend": json_res["area"]["max"],
  167. "geomId": geomId,
  168. "yxyz": [],
  169. # TODO: 循环遍历
  170. # "yxyz": [
  171. # {
  172. # "id": "259e5bbaab434dbfb9c679bd44d4bfa4",
  173. # "name": "幼儿园服务半径",
  174. # "bsm": "TB_YEY",
  175. # "conditionInfo": {
  176. # "spatial_type": "distance",
  177. # "default": "lt",
  178. # "hasValue": true,
  179. # "defaultValue": "300",
  180. # "unit": "米",
  181. # "clip": false
  182. # }
  183. # }
  184. # ],
  185. # "useMultiple": json_res["useMultiple"],
  186. # "useLandType": json_res["useLandType"],
  187. # "multipleDistance": json_res["multipleDistance"]
  188. }
  189. # 循环遍历输入因子
  190. factors = json_res["factors"]
  191. input_factors = {}
  192. for factor in factors:
  193. factorInfo = getFactorByName(factor["type"])
  194. if factorInfo == None:
  195. continue
  196. factorId = factorInfo["id"]
  197. factorBsm = factorInfo["bsm"]
  198. conditionInfo = factorInfo["condition_info"]
  199. conditionObj = json.loads(conditionInfo)
  200. factor_info = {
  201. "id": factorId,
  202. "name": factor["type"],
  203. "bsm": factorBsm,
  204. "conditionInfo": {
  205. "spatial_type": conditionObj["spatial_type"],
  206. "default": factor["condition"],
  207. "hasValue": conditionObj["hasValue"],
  208. "defaultValue": str(factor["value"]),
  209. "unit": conditionObj["unit"],
  210. "clip": conditionObj["clip"]
  211. }
  212. }
  213. input_factors[factor_info["id"]] = factor_info
  214. # 循环遍历模板
  215. for factorTemplate in factorTemplates:
  216. factorId = factorTemplate["id"]
  217. if factorId in input_factors:
  218. res["yxyz"].append(input_factors[factorId])
  219. else:
  220. factorTemplate["conditionInfo"]=json.loads(factorTemplate["conditionInfo"])
  221. res["yxyz"].append(factorTemplate)
  222. resObj={}
  223. resObj["data"]=res
  224. resObj["code"]=200
  225. resObj["type"]="selectLand"
  226. return resObj
  227. # 获取因子信息
  228. def getFactorByName(name):
  229. with conn.cursor(cursor_factory=DictCursor) as cur:
  230. sql = "SELECT * FROM base.t_fzss_fzxz_factor WHERE name = %s"
  231. complete_sql = cur.mogrify(sql, (name,)).decode('utf-8')
  232. logger.info(f"Executing SQL: {complete_sql}")
  233. cur.execute(sql, (name,))
  234. res = cur.fetchone()
  235. return res
  236. # 获取内置模板信息
  237. def getTemplateByCode(code):
  238. with conn.cursor(cursor_factory=DictCursor) as cur:
  239. sql = 'SELECT factor_id as id,factor_name as name,factor_bsm as bsm,condition_info as "conditionInfo" FROM base.t_fzss_fzxz_factor_temp WHERE land_type_code = %s'
  240. complete_sql = cur.mogrify(sql, (code,)).decode('utf-8')
  241. logger.info(f"Executing SQL: {complete_sql}")
  242. cur.execute(sql, (code,))
  243. res = cur.fetchall()
  244. # 将查询结果转换为字典列表
  245. result_list = [dict(row) for row in res]
  246. return result_list
  247. # 获取选址范围信息
  248. def getAiDistrict(name):
  249. with conn.cursor(cursor_factory=DictCursor) as cur:
  250. sql = "SELECT public.st_asewkt(geom) as geom FROM base.t_fzss_fzxz_ai_district WHERE name = %s"
  251. complete_sql = cur.mogrify(sql, (name,)).decode('utf-8')
  252. logger.info(f"Executing SQL: {complete_sql}")
  253. cur.execute(sql, (name,))
  254. res = cur.fetchone()
  255. return res["geom"]
  256. # 保存选址范围信息
  257. def saveGeom(ewkt):
  258. new_uuid = str(uuid.uuid4()) # 生成一个新的 UUID
  259. from_type = 3
  260. with conn.cursor() as cur:
  261. sql = "INSERT INTO base.t_fzss_zhxz_file(id,geom,from_type,create_time,area) VALUES (%s,public.st_geomfromewkt(%s),%s,now(),public.st_area(public.st_geomfromewkt(%s)::public.geography))"
  262. complete_sql = cur.mogrify(
  263. sql, (new_uuid, ewkt, from_type, ewkt)).decode('utf-8')
  264. logger.info(f"Executing SQL: {complete_sql}")
  265. cur.execute(sql, (new_uuid, ewkt, from_type, ewkt))
  266. conn.commit()
  267. return new_uuid
  268. # 获取用地类型信息
  269. def getLandType(landName, fzbs):
  270. with conn.cursor(cursor_factory=DictCursor) as cur:
  271. sql = "SELECT dm,mc,fzbs FROM base.t_fzss_fzxz_dict WHERE mc = %s and fzbs=%s"
  272. complete_sql = cur.mogrify(sql, (landName, fzbs)).decode('utf-8')
  273. logger.info(f"Executing SQL: {complete_sql}")
  274. cur.execute(sql, (landName, fzbs))
  275. res = cur.fetchone()
  276. return res["dm"]
  277. # getTemplateByCode("08")
  278. # getAiDistrict("抱坡区")
  279. # ewkt="SRID=4326;POLYGON ((109.568515723151 18.2729002407864, 109.564270326708 18.2607742953866, 109.580087492139 18.2571512198688, 109.588461804591 18.2570597503377, 109.58884305979 18.2645363088176, 109.582107142538 18.2732736518031, 109.568515723151 18.2729002407864))"
  280. # saveGeom(ewkt)
  281. # getFactorByName("幼儿园服务半径")
  282. if __name__ == '__main__':
  283. # app.run()
  284. app.run(host='0.0.0.0')