voice_translation_test.py 1.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051
  1. from funasr import AutoModel
  2. import time
  3. def vocal_text(input_video_path):
  4. model = AutoModel(model="./Voice_translation", model_revision="v2.0.4",
  5. vad_model="./Endpoint_detection", vad_model_revision="v2.0.4",
  6. punc_model="./Ct_punc", punc_model_revision="v2.0.4",
  7. )
  8. res = model.generate(input_video_path,
  9. batch_size_s=30,
  10. hotword='test')
  11. texts = [item['text'] for item in res]
  12. result = ' '.join(texts)
  13. return result
  14. if __name__ == "__main__":
  15. start_time = time.time()
  16. model = AutoModel(model="./Voice_translation", model_revision="v2.0.4",
  17. vad_model="./Endpoint_detection", vad_model_revision="v2.0.4",
  18. punc_model="./Ct_punc", punc_model_revision="v2.0.4",
  19. )
  20. res = model.generate(input="./data/audio/5bf77846-0193-4f35-92f7-09ce51ee3793.mp3",
  21. batch_size_s=30,
  22. hotword='test')
  23. print(res)
  24. texts = [item['text'] for item in res]
  25. print(texts)
  26. result = ' '.join(texts)
  27. print(result)
  28. # def save(input,savepath):
  29. # outputs = open(savepath, 'w', encoding='utf-8')
  30. # outputs.write(input+'\n')
  31. # outputs.close()
  32. # save(input=result,savepath=r"F:\work\voice_translation\datasets\1.txt")
  33. end_time = time.time()
  34. # 计算时间差
  35. elapsed_time = end_time - start_time
  36. print(f"耗时: {elapsed_time} 秒")