app.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313
  1. from flask import Flask, render_template, request, jsonify
  2. import psycopg2
  3. from psycopg2.extras import DictCursor
  4. import logging
  5. import ollama
  6. import json
  7. import datetime
  8. import uuid
  9. app = Flask(__name__)
  10. # 配置日志
  11. logging.basicConfig(level=logging.INFO)
  12. logger = logging.getLogger(__name__)
  13. # 连接数据库
  14. conn = psycopg2.connect(
  15. dbname="real3d",
  16. user="postgres",
  17. password="postgis",
  18. host="192.168.100.30",
  19. port="5432"
  20. )
  21. # 后台接口
  22. @app.route("/")
  23. def home():
  24. return render_template('index.html')
  25. # 接收消息,大模型解析
  26. @app.route('/msg', methods=['POST'])
  27. def inputMsg():
  28. # 从请求中获取JSON数据
  29. data = request.get_json()
  30. # 检查是否接收到数据
  31. if not data:
  32. return jsonify({"error": "No data received"}), 400
  33. # 打印接收到的消息
  34. print(data['msg'])
  35. msg = data['msg']
  36. # 调用大模型解析
  37. # 这里调用大模型,并返回解析结果
  38. # 生成提示信息
  39. # 定义输入信息变量
  40. # 生成提示信息
  41. # 生成提示信息
  42. prompt = f"""请扮演文本提取工具,把这句话:"{msg}",基于以下因子选择、选址范围和用地类型提取其对应的相关数据,提取结果请严格将json格式字符串输出并保障寄送格式正确无误,
  43. 选址范围 = ['抱坡区','天涯区','崖州区','海棠区','吉阳区' ],
  44. 因子选择 = [
  45. "高程",
  46. "坡度",
  47. "永久基本农田",
  48. "城镇开发边界内",
  49. "生态保护红线",
  50. "文化保护区",
  51. "自然保护地",
  52. "风景名胜区",
  53. "国有使用权",
  54. "河道管理线",
  55. "水库",
  56. "公益林",
  57. "火葬场",
  58. "垃圾处理场",
  59. "污水处理场",
  60. "高压线",
  61. "变电站",
  62. "古树",
  63. "城市道路",
  64. "主要出入口",
  65. "文化活动设施",
  66. "体育运动场所",
  67. "排水",
  68. "供水",
  69. "燃气",
  70. "电力",
  71. "电信",
  72. "十五分钟社区生活圈邻里中心",
  73. "社区服务设施",
  74. "零售商业场所",
  75. "医疗卫生设施",
  76. "幼儿园服务半径",
  77. "小学服务半径",
  78. "为老服务设施"
  79. ]
  80. 用地类型=['园地', '耕地', '林地', '草地', '湿地', '公共卫生用地', '老年人社会福利用地', '儿童社会福利用地', '残疾人社会福利用地', '其他社会福利用地', '零售商业用地', '批发市场用地', '餐饮用地', '旅馆用地', '公用设施营业网点用地', '娱乐用地', '康体用地', '一类工业用地', '二类工业用地', '广播电视设施用地', '环卫用地', '消防用地', '干渠', '水工设施用地', '其他公用设施用地', '公园绿地', '防护绿地', '广场用地', '军事设施用地', '使领馆用地', '宗教用地', '文物古迹用地', '监教场所用地', '殡葬用地', '其他特殊用地', '河流水面', '湖泊水面', '水库水面', '坑塘水面', '沟渠', '冰川及常年积雪', '渔业基础设施用海', '增养殖用海', '捕捞海域', '工业用海', '盐田用海', '固体矿产用海', '油气用海', '可再生能源用海', '海底电缆管道用海', '港口用海', '农业设施建设用地', '耕地', '园地', '林地', '工矿用地', '畜禽养殖设施建设用地', '水产养殖设施建设用地', '城镇住宅用地', '草地', '湿地', '留白用地', '陆地水域', '游憩用海', '特殊用海', '特殊用地', '其他海域', '居住用地', '绿地与开敞空间用地', '水田', '水浇地', '旱地', '果园', '茶园', '橡胶园', '其他园地', '乔木林地', '竹林地', '城镇社区服务设施用地', '农村宅基地', '农村社区服务设施用地', '机关团体用地', '科研用地', '文化用地', '教育用地', '体育用地', '医疗卫生用地', '社会福利用地', '商业用地', '商务金融用地', '二类农村宅基地', '图书与展览用地', '文化活动用地', '高等教育用地', '中等职业教育用地', '体育训练用地', '其他交通设施用地', '供水用地', '排水用地', '供电用地', '供燃气用地', '供热用地', '通信用地', '邮政用地', '医院用地', '基层医疗卫生设施用地', '田间道', '盐碱地', '沙地', '裸土地', '裸岩石砾地', '村道用地', '村庄内部道路用地', '渔业用海', '工矿通信用海', '其他土地', '公共管理与公共服务用地', '仓储用地', '交通运输用地', '公用设施用地', '交通运输用海', '航运用海', '路桥隧道用海', '风景旅游用海', '文体休闲娱乐用海', '军事用海', '其他特殊用海', '空闲地', '田坎', '港口码头用地', '管道运输用地', '城市轨道交通用地', '城镇道路用地', '交通场站用地', '一类城镇住宅用地', '二类城镇住宅用地', '三类城镇住宅用地', '一类农村宅基地', '商业服务业用地', '三类工业用地', '一类物流仓储用地', '二类物流仓储用地', '三类物流仓储用地', '盐田', '对外交通场站用地', '公共交通场站用地', '社会停车场用地', '中小学用地', '幼儿园用地', '其他教育用地', '体育场馆用地', '灌木林地', '其他林地', '天然牧草地', '人工牧草地', '其他草地', '森林沼泽', '灌丛沼泽', '沼泽草地', '其他沼泽地', '沿海滩涂', '内陆滩涂', '红树林地', '乡村道路用地', '种植设施建设用地', '娱乐康体用地', '其他商业服务业用地', '工业用地', '采矿用地', '物流仓储用地', '储备库用地', '铁路用地', '公路用地', '机场用地']
  81. landType是用地类型
  82. districtName是选址范围
  83. area是用地大小,单位统一转换为亩
  84. factors.type是因子选择
  85. 其他公里、千米的单位转换为米
  86. 输出的json格式数据如下:
  87. {{
  88.     "districtName": "抱坡区",
  89. "landType": "耕地",
  90.     "area": {{
  91.         "min": 30,
  92.         "max": 50
  93.     }},
  94.     "factors": [
  95.         {{
  96.             "type": "水库",
  97.             "condition": "大于",
  98.             "value": "100"
  99.         }},
  100.         {{
  101.             "type": "永久基本农田",
  102.             "condition": "不相交"
  103.         }},
  104.         {{
  105.             "type": "城镇开发边界内",
  106.             "condition": "包含"
  107.         }},
  108. {{
  109. "type": "高程",
  110. "condition": "between",
  111. "value": "0,100"
  112. }}
  113.     ]
  114. }}
  115. factors.type是因子名称,需与因子选择中的信息保持一致
  116. json中"condition"的值为"gt"、"lt"、"get"、"let"、"between","not_intersect"、"intersect"、"not_contain"、"contain"、"between"
  117. json中"type"的值如果为"医院"则需改为"医疗卫生设施"
  118. """
  119. try:
  120. res = ollama.generate(
  121. model="qwen2:7b",
  122. stream=False,
  123. prompt=prompt,
  124. options={"temperature": 0},
  125. format="json",
  126. keep_alive=-1
  127. )
  128. print(res["response"])
  129. except Exception as e:
  130. print(f"生成过程中出现错误: {e}")
  131. json_res = res["response"]
  132. json_res = json.loads(json_res)
  133. # 组织成选址需要的数据格式
  134. json_res = jsonResToDict(json_res)
  135. # 返回响应
  136. return jsonify(json_res)
  137. # 将大模型解析的结果转换为选址需要的数据格式
  138. def jsonResToDict(json_res):
  139. # 1.查询选址范围信息
  140. districtName = json_res["districtName"]
  141. ewkt = getAiDistrict(districtName)
  142. # 2.保存选址范围信息
  143. geomId = saveGeom(ewkt)
  144. # 3.获取用地类型信息
  145. landType = json_res["landType"]
  146. landType = getLandType(landType, "YDYHFLDM")
  147. # 4.获取模板信息
  148. factorTemplates = getTemplateByCode(landType)
  149. # TODO 以哪个因子列表为准,模版和因子个数怎么匹配
  150. now = datetime.datetime.now()
  151. formatted_time = now.strftime("%Y%m%d%H%M%S")
  152. res = {
  153. "xzmj": 1500,
  154. "xmmc": "规划选址项目_"+formatted_time,
  155. "jsdw": "建设单位",
  156. "ydxz_bsm": landType,
  157. "ydmjbegin": json_res["ydmjbegin"],
  158. "ydmjend": json_res["ydmjend"],
  159. "geomId": geomId,
  160. "yxyz": [],
  161. # TODO: 循环遍历
  162. # "yxyz": [
  163. # {
  164. # "id": "259e5bbaab434dbfb9c679bd44d4bfa4",
  165. # "name": "幼儿园服务半径",
  166. # "bsm": "TB_YEY",
  167. # "conditionInfo": {
  168. # "spatial_type": "distance",
  169. # "default": "lt",
  170. # "hasValue": true,
  171. # "defaultValue": "300",
  172. # "unit": "米",
  173. # "clip": false
  174. # }
  175. # }
  176. # ],
  177. "useMultiple": json_res["useMultiple"],
  178. "useLandType": json_res["useLandType"],
  179. "multipleDistance": json_res["multipleDistance"]
  180. }
  181. # 循环遍历输入因子
  182. factors = json_res["yxyz"]
  183. input_factors = {}
  184. for factor in factors:
  185. factorInfo = getFactorByName(factor["name"])
  186. if factorInfo == None:
  187. continue
  188. factorId = factorInfo["id"]
  189. factorBsm = factorInfo["bsm"]
  190. conditionInfo = factorInfo["condition_info"]
  191. conditionObj = json.loads(conditionInfo)
  192. factor_info = {
  193. "id": factorId,
  194. "name": factor["name"],
  195. "bsm": factorBsm,
  196. "conditionInfo": {
  197. "spatial_type": conditionObj["spatial_type"],
  198. "default": factor["default"],
  199. "hasValue": conditionObj["hasValue"],
  200. "defaultValue": factor["defaultValue"],
  201. "unit": conditionObj["unit"],
  202. "clip": conditionObj["clip"]
  203. }
  204. }
  205. input_factors[factor_info["id"]] = factor_info
  206. # 循环遍历模板
  207. for factorTemplate in factorTemplates:
  208. factorId = factorTemplate["id"]
  209. if factorId in input_factors:
  210. res["yxyz"].append(input_factors[factorId])
  211. else:
  212. factorTemplate["conditionInfo"]=json.loads(factorTemplate["conditionInfo"])
  213. res["yxyz"].append(factorTemplate)
  214. return res
  215. # 获取因子信息
  216. def getFactorByName(name):
  217. with conn.cursor(cursor_factory=DictCursor) as cur:
  218. sql = "SELECT * FROM base.t_fzss_fzxz_factor WHERE name = %s"
  219. complete_sql = cur.mogrify(sql, (name,)).decode('utf-8')
  220. logger.info(f"Executing SQL: {complete_sql}")
  221. cur.execute(sql, (name,))
  222. res = cur.fetchone()
  223. return res
  224. # 获取内置模板信息
  225. def getTemplateByCode(code):
  226. with conn.cursor(cursor_factory=DictCursor) as cur:
  227. sql = 'SELECT factor_id as id,factor_name as name,factor_bsm as bsm,condition_info as "conditionInfo" FROM base.t_fzss_fzxz_factor_temp WHERE land_type_code = %s'
  228. complete_sql = cur.mogrify(sql, (code,)).decode('utf-8')
  229. logger.info(f"Executing SQL: {complete_sql}")
  230. cur.execute(sql, (code,))
  231. res = cur.fetchall()
  232. # 将查询结果转换为字典列表
  233. result_list = [dict(row) for row in res]
  234. return result_list
  235. # 获取选址范围信息
  236. def getAiDistrict(name):
  237. with conn.cursor(cursor_factory=DictCursor) as cur:
  238. sql = "SELECT public.st_asewkt(geom) as geom FROM base.t_fzss_fzxz_ai_district WHERE name = %s"
  239. complete_sql = cur.mogrify(sql, (name,)).decode('utf-8')
  240. logger.info(f"Executing SQL: {complete_sql}")
  241. cur.execute(sql, (name,))
  242. res = cur.fetchone()
  243. return res["geom"]
  244. # 保存选址范围信息
  245. def saveGeom(ewkt):
  246. new_uuid = str(uuid.uuid4()) # 生成一个新的 UUID
  247. from_type = 3
  248. with conn.cursor() as cur:
  249. sql = "INSERT INTO base.t_fzss_zhxz_file(id,geom,from_type,create_time,area) VALUES (%s,public.st_geomfromewkt(%s),%s,now(),public.st_area(public.st_geomfromewkt(%s)::public.geography))"
  250. complete_sql = cur.mogrify(
  251. sql, (new_uuid, ewkt, from_type, ewkt)).decode('utf-8')
  252. logger.info(f"Executing SQL: {complete_sql}")
  253. cur.execute(sql, (new_uuid, ewkt, from_type, ewkt))
  254. conn.commit()
  255. return new_uuid
  256. # 获取用地类型信息
  257. def getLandType(landName, fzbs):
  258. with conn.cursor(cursor_factory=DictCursor) as cur:
  259. sql = "SELECT dm,mc,fzbs FROM base.t_fzss_fzxz_dict WHERE mc = %s and fzbs=%s"
  260. complete_sql = cur.mogrify(sql, (landName, fzbs)).decode('utf-8')
  261. logger.info(f"Executing SQL: {complete_sql}")
  262. cur.execute(sql, (landName, fzbs))
  263. res = cur.fetchone()
  264. return res["dm"]
  265. # getTemplateByCode("08")
  266. # getAiDistrict("抱坡区")
  267. # ewkt="SRID=4326;POLYGON ((109.568515723151 18.2729002407864, 109.564270326708 18.2607742953866, 109.580087492139 18.2571512198688, 109.588461804591 18.2570597503377, 109.58884305979 18.2645363088176, 109.582107142538 18.2732736518031, 109.568515723151 18.2729002407864))"
  268. # saveGeom(ewkt)
  269. # getFactorByName("幼儿园服务半径")
  270. if __name__ == '__main__':
  271. # app.run()
  272. app.run(host='0.0.0.0')