123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600 |
- from flask import Flask, render_template, request, jsonify
- import psycopg2
- from psycopg2.extras import DictCursor
- import logging
- import ollama
- import json
- import datetime
- import uuid
- import os
- from vocal import voice_text
- from voice_translation_test import vocal_text
- from flask_cors import CORS
- from dotenv import load_dotenv
- from embed import embed
- from query import query
- from get_vector_db import get_vector_db
- import time
- from funasr import AutoModel
- from modelscope.pipelines import pipeline
- from modelscope.utils.constant import Tasks
- from langchain_community.chat_models import ChatOllama
- from langchain.prompts import ChatPromptTemplate, PromptTemplate
- from langchain_core.output_parsers import StrOutputParser
- from langchain_core.runnables import RunnablePassthrough
- from langchain.retrievers.multi_query import MultiQueryRetriever
- from get_vector_db import get_vector_db
- from pypinyin import lazy_pinyin
- import re
- LLM_MODEL = os.getenv('LLM_MODEL', 'qwen2:7b')
- load_dotenv()
- TEMP_FOLDER = os.getenv('TEMP_FOLDER', './_temp')
- os.makedirs(TEMP_FOLDER, exist_ok=True)
- app = Flask(__name__)
- CORS(app)
- # 配置日志
- logging.basicConfig(level=logging.INFO)
- logger = logging.getLogger(__name__)
- # 连接数据库
- conn = psycopg2.connect(
- dbname="real3d",
- user="postgres",
- password="postgis",
- # host="192.168.100.30",
- host="192.168.60.2",
- port="5432"
- )
- # Function to get the prompt templates for generating alternative questions and answering based on context
- def get_prompt():
- QUERY_PROMPT = PromptTemplate(
- input_variables=["question"],
- template="""你是一名AI语言模型助理。你的任务是生成五个
- 从中检索相关文档的给定用户问题的不同版本
- 矢量数据库。通过对用户问题生成多个视角
- 目标是帮助用户克服基于距离的一些局限性
- 相似性搜索。请提供这些用换行符分隔的备选问题。
- Original question: {question}""",
- )
- template = """仅根据以下上下文用中文回答问题:
- {context},请严格以markdown格式输出并保障寄送格式正确无误,
- Question: {question}
- """
- # Question: {question}
- prompt = ChatPromptTemplate.from_template(template)
- return QUERY_PROMPT, prompt
- # 文件保存路径
- UPLOAD_FOLDER = 'data/audio'
- os.makedirs(UPLOAD_FOLDER, exist_ok=True)
- #预加载模型权重到内存加快模型转文本速度
- #模型1
- model = AutoModel(model="E:\\yuyin_model\\Voice_translation", model_revision="v2.0.4",
- vad_model="E:\\yuyin_model\\Endpoint_detection", vad_model_revision="v2.0.4",
- punc_model="E:\\yuyin_model\\Ct_punc", punc_model_revision="v2.0.4",
- use_cuda=True,use_fast = True,
- )
- #模型2
- # inference_pipeline = pipeline(
- # task=Tasks.auto_speech_recognition,
- # # model='iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
- # model='C:\\Users\\siwei\\.cache\\modelscope\\hub\\iic\\speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
- # # model="model\punc_ct-transformer_cn-en-common-vocab471067-large",
- # model_revision="v2.0.4",
- # device='gpu')
- # 后台接口
- @app.route('/embed', methods=['POST'])
- def route_embed():
- start_time = time.time()
- if 'file' not in request.files:
- return jsonify({"error": "No file part"}), 400
- file = request.files['file']
- if file.filename == '':
- return jsonify({"error": "No selected file"}), 400
- embedded = embed(file)
- end_time = time.time()
- print("Time taken for embedding: ", end_time - start_time)
- if embedded:
- return jsonify({"message": "File embedded successfully"}), 200
- return jsonify({"error": "File embedded unsuccessfully"}), 400
- def route_query(msg):
- response = query(msg)
- # print(response)
- # if response:
- # resObj = {}
- # resObj["data"] = response
- # resObj["code"] = 200
- # resObj["type"] = "answer"
- # return resObj
- # return {"error": "Something went wrong"}, 400
- return response
- @app.route('/delete', methods=['DELETE'])
- def route_delete():
- db = get_vector_db()
- db.delete_collection()
- return jsonify({"message": "Collection deleted successfully"}), 200
- @app.route("/")
- def home():
- return render_template('index.html')
- # 后台接口
- #定义需要替换的词
- target_word = "抱坡"
- target_word_pinyin = lazy_pinyin(target_word)
- #判断拼音是否相同
- def is_same_pinyin(word1,word2):
- return lazy_pinyin(word1) == lazy_pinyin(word2)
- #替换同音字
- def replace_word(text,target_word):
- words = re.findall(r'\b\w+\b', text)
- for word in words:
- if is_same_pinyin(word,target_word):
- text = text.replace(word,target_word)
- return text
- # 文件上传
- @app.route('/upload', methods=['POST'])
- def upload_file():
- if 'file' not in request.files:
- return jsonify({"error": "No file part in the request"}), 400
- file = request.files['file']
- if file.filename == '':
- return jsonify({"error": "No file selected for uploading"}), 400
- # 生成UUID文件名
- file_ext = os.path.splitext(file.filename)[1]
- filename = f"{uuid.uuid4()}{file_ext}"
- # 保存文件
- file_path = os.path.join(UPLOAD_FOLDER, filename)
- file.save(file_path)
- #语音转文字模型1
- res = model.generate(file_path,
- batch_size_s=30,
- hotword='test')
- texts = [item['text'] for item in res]
- msg = ' '.join(texts)
- # print(msg)
- #语音转文字模型2
- # res = inference_pipeline(file_path)
- # # print(res)
- # texts = [item['text'] for item in res]
- # # print(texts)
- # msg = ' '.join(texts)
- # msg = vocal_text(file_path)
- os.remove(file_path)
- msg = replace_word(msg,target_word)
- words_to_replace = ["爆破", "爆坡","高坡"]
- for word in words_to_replace:
- msg = msg.replace(word, "抱坡")
- print(msg)
- return jsonify({"msg": "上传成功",
- "code": 200,
- "filename": filename,
- "voiceMsg": msg
- }), 200
- # 接收消息,大模型解析
- chat_history = "用户:你好,我是智能助手,请问有什么可以帮助您?\\n智能助手:好的,请问您有什么需求?"
- sys_xuanzhi = """请扮演文本提取工具,根据输入和聊天上下文信息,基于以下因子选择、选址范围和用地类型提取这句话中的关键信息,提取到的结果请严格以json格式字符串输出并保障寄送格式正确无误,
- 选址范围 = ['抱坡区','天涯区','崖州区','海棠区','吉阳区' ],
- 因子选择 = ["高程","坡度","永久基本农田","城镇开发边界内","生态保护红线","文化保护区","自然保护地","风景名胜区","国有使用权","河道管理线","水库","公益林","火葬场","垃圾处理场","污水处理场","高压线","变电站","古树","城市道路","主要出入口","文化活动设施","体育运动场所","排水","供水","燃气","电力","电信","十五分钟社区生活圈邻里中心","社区服务设施","零售商业场所","医疗卫生设施","幼儿园服务半径","小学服务半径","为老服务设施"],
- 用地类型 = ['园地','耕地','林地','草地','湿地','公共卫生用地','老年人社会福利用地','儿童社会福利用地','残疾人社会福利用地','其他社会福利用地','零售商业用地','批发市场用地','餐饮用地','旅馆用地','公用设施营业网点用地','娱乐用地','康体用地','一类工业用地','二类工业用地','广播电视设施用地','环卫用地','消防用地','干渠','水工设施用地','其他公用设施用地','公园绿地','防护绿地','广场用地','军事设施用地','使领馆用地','宗教用地','文物古迹用地','监教场所用地','殡葬用地','其他特殊用地','河流水面','湖泊水面','水库水面','坑塘水面','沟渠','冰川及常年积雪','渔业基础设施用海','增养殖用海','捕捞海域','工业用海','盐田用海','固体矿产用海','油气用海','可再生能源用海','海底电缆管道用海','港口用海','农业设施建设用地','工矿用地','畜禽养殖设施建设用地','水产养殖设施建设用地','城镇住宅用地','特殊用地','居住用地','绿地与开敞空间用地','水田','水浇地','旱地','果园','茶园','橡胶园','其他园地','乔木林地','竹林地','城镇社区服务设施用地','农村宅基地','农村社区服务设施用地','机关团体用地','科研用地','文化用地','教育用地','体育用地','医疗卫生用地','社会福利用地','商业用地','商务金融用地','二类农村宅基地','图书与展览用地','文化活动用地','高等教育用地','中等职业教育用地','体育训练用地','其他交通设施用地','供水用地','排水用地','供电用地','供燃气用地','供热用地','通信用地','邮政用地','医院用地','基层医疗卫生设施用地','田间道','盐碱地','沙地','裸土地','裸岩石砾地','村道用地','村庄内部道路用地','公共管理与公共服务用地','仓储用地','交通运输用地','公用设施用地','交通运输用海','航运用海','路桥隧道用海','风景旅游用海','文体休闲娱乐用海','军事用海','其他特殊用海','空闲地','田坎','港口码头用地','管道运输用地','城市轨道交通用地','城镇道路用地','交通场站用地','一类城镇住宅用地','二类城镇住宅用地','三类城镇住宅用地','一类农村宅基地','商业服务业用地','三类工业用地','一类物流仓储用地','二类物流仓储用地','三类物流仓储用地','盐田','对外交通场站用地','公共交通场站用地','社会停车场用地','中小学用地','幼儿园用地','其他教育用地','体育场馆用地','灌木林地','其他林地','天然牧草地','人工牧草地','其他草地','森林沼泽','灌丛沼泽','沼泽草地','其他沼泽地','沿海滩涂','内陆滩涂','红树林地','乡村道路用地','种植设施建设用地','娱乐康体用地','其他商业服务业用地','工业用地','采矿用地','物流仓储用地','储备库用地','铁路用地','公路用地','机场用地'],
- landType是用地类型
- districtName是选址范围
- area是用地大小,单位统一转换为亩
- factors是因子选择
- 其他公里、千米的单位转换为米
- 输出json格式数据如下:
- {
- "districtName": "抱坡区",
- "landType": "居住用地",
- "area": {
- "min": 30,
- "max": 50
- },
- "factors": [
- {
- "type": "医疗卫生设施",
- "condition": "lt",
- "value": "500"
- },
- {
- "type": "永久基本农田",
- "condition": "not_intersect"
- },
- {
- "type": "火葬场",
- "condition": "gt",
- "value": "1000"
- },
- {
- "type": "幼儿园服务半径",
- "condition": "lt",
- "value": "1000"
- },
- {
- "type": "小学服务半径",
- "condition": "lt",
- "value": "1000"
- },
- ]
- }
- json中"condition"的值为"gt"、"lt"、"get"、"let"、"between","not_intersect"、"intersect"、"not_contain"、"contain"、"between"
- """
- sys_question = """请扮演问答工具,对用户输入信息进行回答,请严格以markdown格式输出并保障寄送格式正确无误"""
- # 智能选址
- def update_chat_history(user_message):
- global chat_history # 使用全局变量以便更新
- prompt = chat_history + "\\n用户:" + user_message
- # 生成回复,并加入聊天上下文
- res = ollama.generate(
- model="qwen2.5:7b",
- stream=False,
- system=sys_xuanzhi,
- prompt=prompt,
- options={"temperature": 0, "num_ctx": 32000, },
- keep_alive=-1
- )
- # 获取机器人回复
- bot_message = res["response"]
- # 更新聊天历史
- chat_history += "\\n智能助手:" + bot_message
- # 返回机器人的回复
- return bot_message
- #简单知识问答,未关联本地知识库
- def update_chat_history_simple(user_message):
- global chat_history # 使用全局变量以便更新
- prompt = chat_history + "\\n用户:" + user_message
- # 生成回复,并加入聊天上下文
- res = ollama.generate(
- model="qwen2.5:7b",
- stream=False,
- system=sys_question,
- prompt=prompt,
- options={"temperature": 0, "num_ctx": 32000, },
- keep_alive=-1
- )
- # 获取机器人回复
- bot_message = res["response"]
- # 更新聊天历史
- chat_history += "\\n智能助手:" + bot_message
- # 返回机器人的回复
- return bot_message
- @app.route('/closeMsg', methods=['DELETE'])
- def delMsg():
- global chat_history
- chat_history = ""
- return jsonify({"msg": "清除成功",
- "code": 200,
- "chat_history": chat_history,
- })
- @app.route('/msg', methods=['POST'])
- def inputMsg():
- # 从请求中获取JSON数据
- data = request.get_json()
- # 检查是否接收到数据
- if not data:
- return jsonify({"error": "No data received"}), 400
- # 打印接收到的消息
- print(data['msg'])
- msg = data['msg']
- msg = replace_word(msg,target_word)
- words_to_replace1 = ["爆破", "爆坡"]
- for word in words_to_replace1:
- msg = msg.replace(word, "抱坡")
- print(msg)
- type = data['type']
- if type == 'selectLand':
- # 调用大模型解析
- # 这里调用大模型,并返回解析结果
- # 示例:用户输入一条消息
- # msg= "我计划在抱坡区选取适宜地块作为工业用地,要求其在城市开发边界内,离小学大于1000m,坡度小于25度,用地面积在80-100亩之间。"
- res = update_chat_history(msg)
- print(res) # 打印生成的回复
- addtress = ['抱坡区', '天涯区', '崖州区', '海棠区', '吉阳区']
- land = ['园地','耕地','林地','草地','湿地','公共卫生用地','老年人社会福利用地','儿童社会福利用地','残疾人社会福利用地','其他社会福利用地','零售商业用地','批发市场用地','餐饮用地','旅馆用地','公用设施营业网点用地','娱乐用地','康体用地','一类工业用地','二类工业用地','广播电视设施用地','环卫用地','消防用地','干渠','水工设施用地','其他公用设施用地','公园绿地','防护绿地','广场用地','军事设施用地','使领馆用地','宗教用地','文物古迹用地','监教场所用地','殡葬用地','其他特殊用地','河流水面','湖泊水面','水库水面','坑塘水面','沟渠','冰川及常年积雪','渔业基础设施用海','增养殖用海','捕捞海域','工业用海','盐田用海','固体矿产用海','油气用海','可再生能源用海','海底电缆管道用海','港口用海','农业设施建设用地','工矿用地','畜禽养殖设施建设用地','水产养殖设施建设用地','城镇住宅用地','特殊用地','居住用地','绿地与开敞空间用地','水田','水浇地','旱地','果园','茶园','橡胶园','其他园地','乔木林地','竹林地','城镇社区服务设施用地','农村宅基地','农村社区服务设施用地','机关团体用地','科研用地','文化用地','教育用地','体育用地','医疗卫生用地','社会福利用地','商业用地','商务金融用地','二类农村宅基地','图书与展览用地','文化活动用地','高等教育用地','中等职业教育用地','体育训练用地','其他交通设施用地','供水用地','排水用地','供电用地','供燃气用地','供热用地','通信用地','邮政用地','医院用地','基层医疗卫生设施用地','田间道','盐碱地','沙地','裸土地','裸岩石砾地','村道用地','村庄内部道路用地','公共管理与公共服务用地','仓储用地','交通运输用地','公用设施用地','交通运输用海','航运用海','路桥隧道用海','风景旅游用海','文体休闲娱乐用海','军事用海','其他特殊用海','空闲地','田坎','港口码头用地','管道运输用地','城市轨道交通用地','城镇道路用地','交通场站用地','一类城镇住宅用地','二类城镇住宅用地','三类城镇住宅用地','一类农村宅基地','商业服务业用地','三类工业用地','一类物流仓储用地','二类物流仓储用地','三类物流仓储用地','盐田','对外交通场站用地','公共交通场站用地','社会停车场用地','中小学用地','幼儿园用地','其他教育用地','体育场馆用地','灌木林地','其他林地','天然牧草地','人工牧草地','其他草地','森林沼泽','灌丛沼泽','沼泽草地','其他沼泽地','沿海滩涂','内陆滩涂','红树林地','乡村道路用地','种植设施建设用地','娱乐康体用地','其他商业服务业用地','工业用地','采矿用地','物流仓储用地','储备库用地','铁路用地','公路用地','机场用地']
- json_res = res.replace("json","")
- json_res = json_res.replace("```","")
- if json_res != "未找到相关数据":
- try:
- json_res = json.loads(json_res)
- districtName = json_res["districtName"]
- landType = json_res["landType"]
- # if landType != "未找到相关数据" and landType != "" and districtName != "未找到相关数据"and districtName != "":
- if landType in land and districtName in addtress:
- json_res = jsonResToDict(json_res)
- # print(json_res)
- else:
- json_res = "未找到相关数据"
- json_res = jsonResToDict_wrong(json_res)
- except:
- json_res = "未找到相关数据"
- json_res = jsonResToDict_wrong(json_res)
- else:
- json_res = "未找到相关数据"
- json_res = jsonResToDict_wrong(json_res)
- elif type == 'answer':
- # json_res = route_query(msg)
- # json_res = jsonResToDict_questions(json_res)
- # print(json_res) # 打印生成的回复
- json_res = update_chat_history_simple(msg)
- json_res = jsonResToDict_questions(json_res)
- print(json_res) # 打印生成的回复
- # 返回响应
- return jsonify(json_res)
- # 将大模型解析的结果转换为选址需要的数据格式
- def jsonResToDict(json_res):
- # 1.查询选址范围信息
- districtName = json_res["districtName"]
- ewkt = getAiDistrict(districtName)
- # 2.保存选址范围信息
- geomId = saveGeom(ewkt)
- # 3.获取用地类型信息
- landType = json_res["landType"]
- landType = getLandType(landType, "YDYHFLDM")
- # 4.获取模板信息
- factorTemplates = getTemplateByCode(landType)
- # TODO 以哪个因子列表为准,模版和因子个数怎么匹配
- now = datetime.datetime.now()
- formatted_time = now.strftime("%Y%m%d%H%M%S")
- res = {
- "xzmj": 1500,
- "xmmc": "规划选址项目_"+formatted_time,
- "jsdw": "建设单位",
- "ydxz_bsm": landType,
- "ydmjbegin": json_res["area"]["min"],
- "ydmjend": json_res["area"]["max"],
- "geomId": geomId,
- "yxyz": [],
- # TODO: 循环遍历
- # "yxyz": [
- # {
- # "id": "259e5bbaab434dbfb9c679bd44d4bfa4",
- # "name": "幼儿园服务半径",
- # "bsm": "TB_YEY",
- # "conditionInfo": {
- # "spatial_type": "distance",
- # "default": "lt",
- # "hasValue": true,
- # "defaultValue": "300",
- # "unit": "米",
- # "clip": false
- # }
- # }
- # ],
- # "useMultiple": json_res["useMultiple"],
- "useLandType": True,
- # "multipleDistance": json_res["multipleDistance"]
- }
- # 循环遍历输入因子
- factors = json_res["factors"]
- input_factors = {}
- for factor in factors:
- factorInfo = getFactorByName(factor["type"])
- if factorInfo == None:
- continue
- factorId = factorInfo["id"]
- factorBsm = factorInfo["bsm"]
- conditionInfo = factorInfo["condition_info"]
- conditionObj = json.loads(conditionInfo)
- defaultValue = '0'
- default = 'lt'
- if "value" in factor:
- defaultValue = str(factor["value"])
- if "condition" in factor:
- default = factor["condition"]
- # if defaultValue == '':
- # defaultValue = '0'
- factor_info = {
- "id": factorId,
- "name": factor["type"],
- "bsm": factorBsm,
- "conditionInfo": {
- "spatial_type": conditionObj["spatial_type"],
- "default": default,
- "hasValue": conditionObj["hasValue"],
- "defaultValue": defaultValue,
- "unit": conditionObj["unit"],
- "clip": conditionObj["clip"]
- }
- }
- input_factors[factor_info["id"]] = factor_info
- # 循环遍历模板
- # 记录已经添加的因子 ID
- added_factor_ids = set()
- # 首先处理模板
- for factorTemplate in factorTemplates:
- factorId = factorTemplate["id"]
- factorTemplate["conditionInfo"] = json.loads(factorTemplate["conditionInfo"])
- res["yxyz"].append(factorTemplate)
- added_factor_ids.add(factorId) # 记录已添加的因子 ID
- # 然后检查 input_factors 并添加未在模板中的因子
- for factor_id, factor_info in input_factors.items():
- if factor_id not in added_factor_ids:
- res["yxyz"].append(factor_info)
- resObj = {}
- resObj["data"] = res
- resObj["code"] = 200
- resObj["type"] = "selectLand"
- return resObj
- #返回问答信息
- def jsonResToDict_questions(json_res):
- resObj = {}
- resObj["data"] = json_res
- resObj["code"] = 200
- resObj["type"] = "answer"
- return resObj
- # 返回错误信息
- def jsonResToDict_wrong(json_res):
- resObj = {}
- resObj["data"] = json_res
- resObj["code"] = 500
- resObj["type"] = "selectLand"
- return resObj
- # 获取因子信息
- def getFactorByName(name):
- with conn.cursor(cursor_factory=DictCursor) as cur:
- sql = "SELECT * FROM base.t_fzss_fzxz_factor WHERE name = %s"
- complete_sql = cur.mogrify(sql, (name,)).decode('utf-8')
- logger.info(f"Executing SQL: {complete_sql}")
- cur.execute(sql, (name,))
- res = cur.fetchone()
- return res
- # 获取内置模板信息
- def getTemplateByCode(code):
- with conn.cursor(cursor_factory=DictCursor) as cur:
- sql = 'SELECT factor_id as id,factor_name as name,factor_bsm as bsm,condition_info as "conditionInfo" FROM base.t_fzss_fzxz_factor_temp WHERE land_type_code = %s'
- complete_sql = cur.mogrify(sql, (code,)).decode('utf-8')
- logger.info(f"Executing SQL: {complete_sql}")
- cur.execute(sql, (code,))
- res = cur.fetchall()
- # 将查询结果转换为字典列表
- result_list = [dict(row) for row in res]
- return result_list
- # 获取选址范围信息
- def getAiDistrict(name):
- with conn.cursor(cursor_factory=DictCursor) as cur:
- sql = "SELECT public.st_asewkt(geom) as geom FROM base.t_fzss_fzxz_ai_district WHERE name = %s"
- complete_sql = cur.mogrify(sql, (name,)).decode('utf-8')
- logger.info(f"Executing SQL: {complete_sql}")
- cur.execute(sql, (name,))
- res = cur.fetchone()
- return res["geom"]
- # 保存选址范围信息
- def saveGeom(ewkt):
- new_uuid = str(uuid.uuid4()) # 生成一个新的 UUID
- from_type = 3
- with conn.cursor() as cur:
- sql = "INSERT INTO base.t_fzss_zhxz_file(id,geom,from_type,create_time,area) VALUES (%s,public.st_geomfromewkt(%s),%s,now(),public.st_area(public.st_geomfromewkt(%s)::public.geography))"
- complete_sql = cur.mogrify(
- sql, (new_uuid, ewkt, from_type, ewkt)).decode('utf-8')
- logger.info(f"Executing SQL: {complete_sql}")
- cur.execute(sql, (new_uuid, ewkt, from_type, ewkt))
- conn.commit()
- return new_uuid
- # 获取用地类型信息
- def getLandType(landName, fzbs):
- with conn.cursor(cursor_factory=DictCursor) as cur:
- sql = "SELECT dm,mc,fzbs FROM base.t_fzss_fzxz_dict WHERE mc = %s and fzbs=%s"
- complete_sql = cur.mogrify(sql, (landName, fzbs)).decode('utf-8')
- logger.info(f"Executing SQL: {complete_sql}")
- cur.execute(sql, (landName, fzbs))
- res = cur.fetchone()
- return res["dm"]
- # getTemplateByCode("08")
- # getAiDistrict("抱坡区")
- # ewkt="SRID=4326;POLYGON ((109.568515723151 18.2729002407864, 109.564270326708 18.2607742953866, 109.580087492139 18.2571512198688, 109.588461804591 18.2570597503377, 109.58884305979 18.2645363088176, 109.582107142538 18.2732736518031, 109.568515723151 18.2729002407864))"
- # saveGeom(ewkt)
- # getFactorByName("幼儿园服务半径")
- # msg=voice_text('data/audio/1364627f-5a9b-42d7-b7f6-b99c094606cd.mp3')
- # msg=vocal_text('data/audio/1364627f-5a9b-42d7-b7f6-b99c094606cd.mp3')
- # print(msg)
- if __name__ == '__main__':
- # app.run()
- app.run(
- host='0.0.0.0',
- port=4000
- )
|