app.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246
  1. from flask import Flask, render_template, request, jsonify
  2. import psycopg2
  3. from psycopg2.extras import DictCursor
  4. import logging
  5. import ollama
  6. import json
  7. import datetime
  8. import uuid
  9. app = Flask(__name__)
  10. # 配置日志
  11. logging.basicConfig(level=logging.INFO)
  12. logger = logging.getLogger(__name__)
  13. # 连接数据库
  14. conn = psycopg2.connect(
  15. dbname="real3d",
  16. user="postgres",
  17. password="postgis",
  18. host="192.168.100.30",
  19. port="5432"
  20. )
  21. # 后台接口
  22. @app.route("/")
  23. def home():
  24. return render_template('index.html')
  25. # 接收消息,大模型解析
  26. @app.route('/msg', methods=['POST'])
  27. def inputMsg():
  28. # 从请求中获取JSON数据
  29. data = request.get_json()
  30. # 检查是否接收到数据
  31. if not data:
  32. return jsonify({"error": "No data received"}), 400
  33. # 打印接收到的消息
  34. print(data['msg'])
  35. msg = data['msg']
  36. # 调用大模型解析
  37. # 这里调用大模型,并返回解析结果
  38. # 生成提示信息
  39. # 定义输入信息变量
  40. # 生成提示信息
  41. prompt = f"""请扮演地理领域的智能选址文本提取工具,基于以下因子选择、选择范围和用地类型提取其对应的相关数据,
  42. 因子选择:['抱坡区','天涯区','崖州区','海棠区','吉阳区' ],
  43. 用地类型:['规划因子', '永久基本农田', '城镇开发边界内', '生态保护红线', '文化保护区', '自然保护地', '风景名胜区', '权属因子', '国有使用权', '防控因子', '河道管理线', '水库', '公益林', '地形因子', '坡度', '邻避因子', '火葬场', '垃圾处理场', '污水处理场', '高压线', '变电站', '古树', '市政设施', '交通', '城市道路', '主要出入口', '管线', '排水', '供水', '燃气', '电力', '电信', '公共服务设施', '十五分钟社区生活圈邻里中心', '社区服务设施', '零售商业场所', '医疗卫生设施', '教育场所', '幼儿园服务半径', '小学服务半径', '为老服务设施', '文化活动设施', '体育运动场所'],
  44. 选址范围:['园地', '耕地', '林地', '草地', '湿地', '公共卫生用地', '老年人社会福利用地', '儿童社会福利用地', '残疾人社会福利用地', '其他社会福利用地', '零售商业用地', '批发市场用地', '餐饮用地', '旅馆用地', '公用设施营业网点用地', '娱乐用地', '康体用地', '一类工业用地', '二类工业用地', '广播电视设施用地', '环卫用地', '消防用地', '干渠', '水工设施用地', '其他公用设施用地', '公园绿地', '防护绿地', '广场用地', '军事设施用地', '使领馆用地', '宗教用地', '文物古迹用地', '监教场所用地', '殡葬用地', '其他特殊用地', '河流水面', '湖泊水面', '水库水面', '坑塘水面', '沟渠', '冰川及常年积雪', '渔业基础设施用海', '增养殖用海', '捕捞海域', '工业用海', '盐田用海', '固体矿产用海', '油气用海', '可再生能源用海', '海底电缆管道用海', '港口用海', '农业设施建设用地', '耕地', '园地', '林地', '工矿用地', '畜禽养殖设施建设用地', '水产养殖设施建设用地', '城镇住宅用地', '草地', '湿地', '留白用地', '陆地水域', '游憩用海', '特殊用海', '特殊用地', '其他海域', '居住用地', '绿地与开敞空间用地', '水田', '水浇地', '旱地', '果园', '茶园', '橡胶园', '其他园地', '乔木林地', '竹林地', '城镇社区服务设施用地', '农村宅基地', '农村社区服务设施用地', '机关团体用地', '科研用地', '文化用地', '教育用地', '体育用地', '医疗卫生用地', '社会福利用地', '商业用地', '商务金融用地', '二类农村宅基地', '图书与展览用地', '文化活动用地', '高等教育用地', '中等职业教育用地', '体育训练用地', '其他交通设施用地', '供水用地', '排水用地', '供电用地', '供燃气用地', '供热用地', '通信用地', '邮政用地', '医院用地', '基层医疗卫生设施用地', '田间道', '盐碱地', '沙地', '裸土地', '裸岩石砾地', '村道用地', '村庄内部道路用地', '渔业用海', '工矿通信用海', '其他土地', '公共管理与公共服务用地', '仓储用地', '交通运输用地', '公用设施用地', '交通运输用海', '航运用海', '路桥隧道用海', '风景旅游用海', '文体休闲娱乐用海', '军事用海', '其他特殊用海', '空闲地', '田坎', '港口码头用地', '管道运输用地', '城市轨道交通用地', '城镇道路用地', '交通场站用地', '一类城镇住宅用地', '二类城镇住宅用地', '三类城镇住宅用地', '一类农村宅基地', '商业服务业用地', '三类工业用地', '一类物流仓储用地', '二类物流仓储用地', '三类物流仓储用地', '盐田', '对外交通场站用地', '公共交通场站用地', '社会停车场用地', '中小学用地', '幼儿园用地', '其他教育用地', '体育场馆用地', '灌木林地', '其他林地', '天然牧草地', '人工牧草地', '其他草地', '森林沼泽', '灌丛沼泽', '沼泽草地', '其他沼泽地', '沿海滩涂', '内陆滩涂', '红树林地', '乡村道路用地', '种植设施建设用地', '娱乐康体用地', '其他商业服务业用地', '工业用地', '采矿用地', '物流仓储用地', '储备库用地', '铁路用地', '公路用地', '机场用地'],
  45. landType是用地类型,
  46. districtName是选址范围,
  47. area是用地大小,单位统一转换为亩
  48. yxyz是因子选择,公里、千米的单位转换为米,
  49. 输入以下信息:"{msg}",请基于因子选择、选址范围和用地类型,提取其对应的相关数据,并把提取结果中的景点转换为风景名胜区、农田转换为永久基本农田等。结果以下面格式输出:
  50. {{"districtName":"抱坡区","landType":"居住用地","area": {{ "min": 30,"max": 50}},"factors": [{{"type": "水库","condition": "大于","value": "100"}},{{"type": "小学服务半径","condition": "小于","value": "1000"}},{{"type": "永久基本农田","condition": "不相交" }}, {{"type": "城镇开发边界内","condition": "包含"}}]}},
  51. """
  52. try:
  53. res = ollama.generate(
  54. model="qwen2:7b",
  55. stream=False,
  56. prompt=prompt,
  57. options={"temperature": 0},
  58. format="json",
  59. keep_alive=-1
  60. )
  61. print(res["response"])
  62. except Exception as e:
  63. print(f"生成过程中出现错误: {e}")
  64. res1 = res["response"].replace("大于","gt").replace("小于","lt").replace("大于等于","get").replace("小于等于","let").replace("介于","between")
  65. json_res = res1
  66. json_res = json.loads(json_res)
  67. # 组织成选址需要的数据格式
  68. json_res = jsonResToDict(json_res)
  69. # 返回响应
  70. return jsonify(json_res)
  71. # 将大模型解析的结果转换为选址需要的数据格式
  72. def jsonResToDict(json_res):
  73. # 1.查询选址范围信息
  74. districtName = json_res["districtName"]
  75. ewkt = getAiDistrict(districtName)
  76. # 2.保存选址范围信息
  77. geomId = saveGeom(ewkt)
  78. # 3.获取用地类型信息
  79. landType = json_res["landType"]
  80. landType = getLandType(landType, "YDYHFLDM")
  81. # 4.获取模板信息
  82. factorTemplates = getTemplateByCode(landType)
  83. # TODO 以哪个因子列表为准,模版和因子个数怎么匹配
  84. now = datetime.datetime.now()
  85. formatted_time = now.strftime("%Y%m%d%H%M%S")
  86. res = {
  87. "xzmj": 1500,
  88. "xmmc": "规划选址项目_"+formatted_time,
  89. "jsdw": "建设单位",
  90. "ydxz_bsm": landType,
  91. "ydmjbegin": json_res["ydmjbegin"],
  92. "ydmjend": json_res["ydmjend"],
  93. "geomId": geomId,
  94. "yxyz": [],
  95. # TODO: 循环遍历
  96. # "yxyz": [
  97. # {
  98. # "id": "259e5bbaab434dbfb9c679bd44d4bfa4",
  99. # "name": "幼儿园服务半径",
  100. # "bsm": "TB_YEY",
  101. # "conditionInfo": {
  102. # "spatial_type": "distance",
  103. # "default": "lt",
  104. # "hasValue": true,
  105. # "defaultValue": "300",
  106. # "unit": "米",
  107. # "clip": false
  108. # }
  109. # }
  110. # ],
  111. "useMultiple": json_res["useMultiple"],
  112. "useLandType": json_res["useLandType"],
  113. "multipleDistance": json_res["multipleDistance"]
  114. }
  115. # 循环遍历输入因子
  116. factors = json_res["yxyz"]
  117. input_factors = {}
  118. for factor in factors:
  119. factorInfo = getFactorByName(factor["name"])
  120. if factorInfo == None:
  121. continue
  122. factorId = factorInfo["id"]
  123. factorBsm = factorInfo["bsm"]
  124. conditionInfo = factorInfo["condition_info"]
  125. conditionObj = json.loads(conditionInfo)
  126. factor_info = {
  127. "id": factorId,
  128. "name": factor["name"],
  129. "bsm": factorBsm,
  130. "conditionInfo": {
  131. "spatial_type": conditionObj["spatial_type"],
  132. "default": factor["default"],
  133. "hasValue": conditionObj["hasValue"],
  134. "defaultValue": factor["defaultValue"],
  135. "unit": conditionObj["unit"],
  136. "clip": conditionObj["clip"]
  137. }
  138. }
  139. input_factors[factor_info["id"]] = factor_info
  140. # 循环遍历模板
  141. for factorTemplate in factorTemplates:
  142. factorId = factorTemplate["id"]
  143. if factorId in input_factors:
  144. res["yxyz"].append(input_factors[factorId])
  145. else:
  146. factorTemplate["conditionInfo"]=json.loads(factorTemplate["conditionInfo"])
  147. res["yxyz"].append(factorTemplate)
  148. return res
  149. # 获取因子信息
  150. def getFactorByName(name):
  151. with conn.cursor(cursor_factory=DictCursor) as cur:
  152. sql = "SELECT * FROM base.t_fzss_fzxz_factor WHERE name = %s"
  153. complete_sql = cur.mogrify(sql, (name,)).decode('utf-8')
  154. logger.info(f"Executing SQL: {complete_sql}")
  155. cur.execute(sql, (name,))
  156. res = cur.fetchone()
  157. return res
  158. # 获取内置模板信息
  159. def getTemplateByCode(code):
  160. with conn.cursor(cursor_factory=DictCursor) as cur:
  161. sql = 'SELECT factor_id as id,factor_name as name,factor_bsm as bsm,condition_info as "conditionInfo" FROM base.t_fzss_fzxz_factor_temp WHERE land_type_code = %s'
  162. complete_sql = cur.mogrify(sql, (code,)).decode('utf-8')
  163. logger.info(f"Executing SQL: {complete_sql}")
  164. cur.execute(sql, (code,))
  165. res = cur.fetchall()
  166. # 将查询结果转换为字典列表
  167. result_list = [dict(row) for row in res]
  168. return result_list
  169. # 获取选址范围信息
  170. def getAiDistrict(name):
  171. with conn.cursor(cursor_factory=DictCursor) as cur:
  172. sql = "SELECT public.st_asewkt(geom) as geom FROM base.t_fzss_fzxz_ai_district WHERE name = %s"
  173. complete_sql = cur.mogrify(sql, (name,)).decode('utf-8')
  174. logger.info(f"Executing SQL: {complete_sql}")
  175. cur.execute(sql, (name,))
  176. res = cur.fetchone()
  177. return res["geom"]
  178. # 保存选址范围信息
  179. def saveGeom(ewkt):
  180. new_uuid = str(uuid.uuid4()) # 生成一个新的 UUID
  181. from_type = 3
  182. with conn.cursor() as cur:
  183. sql = "INSERT INTO base.t_fzss_zhxz_file(id,geom,from_type,create_time,area) VALUES (%s,public.st_geomfromewkt(%s),%s,now(),public.st_area(public.st_geomfromewkt(%s)::public.geography))"
  184. complete_sql = cur.mogrify(
  185. sql, (new_uuid, ewkt, from_type, ewkt)).decode('utf-8')
  186. logger.info(f"Executing SQL: {complete_sql}")
  187. cur.execute(sql, (new_uuid, ewkt, from_type, ewkt))
  188. conn.commit()
  189. return new_uuid
  190. # 获取用地类型信息
  191. def getLandType(landName, fzbs):
  192. with conn.cursor(cursor_factory=DictCursor) as cur:
  193. sql = "SELECT dm,mc,fzbs FROM base.t_fzss_fzxz_dict WHERE mc = %s and fzbs=%s"
  194. complete_sql = cur.mogrify(sql, (landName, fzbs)).decode('utf-8')
  195. logger.info(f"Executing SQL: {complete_sql}")
  196. cur.execute(sql, (landName, fzbs))
  197. res = cur.fetchone()
  198. return res["dm"]
  199. # getTemplateByCode("08")
  200. # getAiDistrict("抱坡区")
  201. # ewkt="SRID=4326;POLYGON ((109.568515723151 18.2729002407864, 109.564270326708 18.2607742953866, 109.580087492139 18.2571512198688, 109.588461804591 18.2570597503377, 109.58884305979 18.2645363088176, 109.582107142538 18.2732736518031, 109.568515723151 18.2729002407864))"
  202. # saveGeom(ewkt)
  203. # getFactorByName("幼儿园服务半径")
  204. if __name__ == '__main__':
  205. # app.run()
  206. app.run(host='0.0.0.0')