# from funasr import AutoModel # import time # def vocal_text(input_video_path): # model = AutoModel(model="./Voice_translation", model_revision="v2.0.4", # vad_model="./Endpoint_detection", vad_model_revision="v2.0.4", # punc_model="./Ct_punc", punc_model_revision="v2.0.4", # use_cuda=True,use_fast = True, # ) # res = model.generate(input_video_path, # batch_size_s=30, # hotword='test') # texts = [item['text'] for item in res] # result = ' '.join(texts) # return result # if __name__ == "__main__": # start_time = time.time() # model = AutoModel(model="./Voice_translation", model_revision="v2.0.4", # vad_model="./Endpoint_detection", vad_model_revision="v2.0.4", # punc_model="./Ct_punc", punc_model_revision="v2.0.4", # ) # res = model.generate(input="./data/audio/5bf77846-0193-4f35-92f7-09ce51ee3793.mp3", # batch_size_s=30, # hotword='test') # print(res) # texts = [item['text'] for item in res] # print(texts) # result = ' '.join(texts) # print(result) # # def save(input,savepath): # # outputs = open(savepath, 'w', encoding='utf-8') # # outputs.write(input+'\n') # # outputs.close() # # save(input=result,savepath=r"F:\work\voice_translation\datasets\1.txt") # end_time = time.time() # # 计算时间差 # elapsed_time = end_time - start_time # print(f"耗时: {elapsed_time} 秒")