from flask import Flask, render_template, request, jsonify import psycopg2 from psycopg2.extras import DictCursor import logging import ollama import json import datetime import uuid import os from vocal import voice_text from voice_translation_test import vocal_text from flask_cors import CORS from dotenv import load_dotenv from embed import embed from query import query from get_vector_db import get_vector_db import time load_dotenv() TEMP_FOLDER = os.getenv('TEMP_FOLDER', './_temp') os.makedirs(TEMP_FOLDER, exist_ok=True) app = Flask(__name__) CORS(app) # 配置日志 logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # 连接数据库 conn = psycopg2.connect( dbname="real3d", user="postgres", password="postgis", # host="192.168.100.30", host="192.168.60.2", port="5432" ) # 文件保存路径 UPLOAD_FOLDER = 'data/audio' os.makedirs(UPLOAD_FOLDER, exist_ok=True) # 后台接口 @app.route('/embed', methods=['POST']) def route_embed(): start_time = time.time() if 'file' not in request.files: return jsonify({"error": "No file part"}), 400 file = request.files['file'] if file.filename == '': return jsonify({"error": "No selected file"}), 400 embedded = embed(file) end_time = time.time() print("Time taken for embedding: ", end_time - start_time) if embedded: return jsonify({"message": "File embedded successfully"}), 200 return jsonify({"error": "File embedded unsuccessfully"}), 400 def route_query(msg): response = query(msg) if response: resObj = {} resObj["data"] = response resObj["code"] = 200 resObj["type"] = "answer" return resObj return {"error": "Something went wrong"}, 400 @app.route('/delete', methods=['DELETE']) def route_delete(): db = get_vector_db() db.delete_collection() return jsonify({"message": "Collection deleted successfully"}), 200 @app.route("/") def home(): return render_template('index.html') # 后台接口 @app.route("/hello") def hello(): return "Hello, World!" # 文件上传 @app.route('/upload', methods=['POST']) def upload_file(): if 'file' not in request.files: return jsonify({"error": "No file part in the request"}), 400 file = request.files['file'] if file.filename == '': return jsonify({"error": "No file selected for uploading"}), 400 # 生成UUID文件名 file_ext = os.path.splitext(file.filename)[1] filename = f"{uuid.uuid4()}{file_ext}" # 保存文件 file_path = os.path.join(UPLOAD_FOLDER, filename) file.save(file_path) msg = vocal_text(file_path) msg = msg.replace("爆破", "抱坡") return jsonify({"msg": "上传成功", "code": 200, "filename": filename, "voiceMsg": msg }), 200 # 接收消息,大模型解析 chat_history = "用户:你好,我是智能助手,请问有什么可以帮助您?\\n智能助手:好的,请问您有什么需求?" sys = """请扮演文本提取工具,根据输入和聊天上下文信息,基于以下因子选择、选址范围和用地类型提取这句话中的关键信息,提取到的结果请严格将json格式字符串输出并保障寄送格式正确无误,如果没有提取到相关数据则不用以json格式字符串进行输出,只输出提示:"未找到相关数据"。 选址范围 = ['抱坡区','天涯区','崖州区','海棠区','吉阳区' ], 因子选择 = ["园地", "耕地", "林地", "草地", "湿地","公共卫生用地", "老年人社会福利用地", "儿童社会福利用地", "残疾人社会福利用地", "其他社会福利用地","零售商业用地", "批发市场用地", "餐饮用地", "旅馆用地", "公用设施营业网点用地","娱乐用地", "康体用地", "一类工业用地", "二类工业用地", "广播电视设施用地","环卫用地", "消防用地", "干渠", "水工设施用地", "其他公用设施用地","公园绿地", "防护绿地", "广场用地", "军事设施用地"], landType是用地类型 districtName是选址范围 area是用地大小,单位统一转换为亩 factors是因子选择 其他公里、千米的单位转换为米 json格式数据如下: {     "districtName": "抱坡区", "landType": "居住用地",     "area": {         "min": 30,         "max": 50     },     "factors": [         {             "type": "医疗卫生设施",             "condition": "lt",             "value": "500"         },         {             "type": "永久基本农田",             "condition": "not_intersect"         },         {             "type": "火葬场",             "condition": "gt",             "value": "1000"         }, {             "type": "幼儿园服务半径",             "condition": "lt",             "value": "1000"         }, {             "type": "小学服务半径",             "condition": "lt",             "value": "1000"         },     ] } json中"condition"的值为"gt"、"lt"、"get"、"let"、"between","not_intersect"、"intersect"、"not_contain"、"contain"、"between" """ def update_chat_history(user_message): global chat_history # 使用全局变量以便更新 prompt = chat_history + "\\n用户:" + user_message # 生成回复,并加入聊天上下文 res = ollama.generate( model="qwen2:7b", stream=False, system=sys, prompt=prompt, options={"temperature": 0, "num_ctx": 32000, }, keep_alive=-1 ) # 获取机器人回复 bot_message = res["response"] # 更新聊天历史 chat_history += "\\n智能助手:" + bot_message # 返回机器人的回复 return bot_message @app.route('/closeMsg', methods=['DELETE']) def delMsg(): chat_history = "" return jsonify({"msg": "清除成功", "code": 200, "chat_history": chat_history }) @app.route('/msg', methods=['POST']) def inputMsg(): # 从请求中获取JSON数据 data = request.get_json() # 检查是否接收到数据 if not data: return jsonify({"error": "No data received"}), 400 # 打印接收到的消息 print(data['msg']) msg = data['msg'] type = data['type'] if type == 'selectLand': # 调用大模型解析 # 这里调用大模型,并返回解析结果 # 示例:用户输入一条消息 # msg= "我计划在抱坡区选取适宜地块作为工业用地,要求其在城市开发边界内,离小学大于1000m,坡度小于25度,用地面积在80-100亩之间。" res = update_chat_history(msg) print(res) # 打印生成的回复 addtress = ['抱坡区', '天涯区', '崖州区', '海棠区', '吉阳区'] land = ['园地', '耕地', '林地', '草地', '湿地', '公共卫生用地', '老年人社会福利用地', '儿童社会福利用地', '残疾人社会福利用地', '其他社会福利用地', '零售商业用地', '居住用地', '批发市场用地', '餐饮用地', '旅馆用地', '公用设施营业网点用地', '娱乐用地', '康体用地', '一类工业用地', '二类工业用地', '广播电视设施用地', '环卫用地', '消防用地', '干渠', '水工设施用地', '其他公用设施用地', '公园绿地', '防护绿地', '广场用地', '军事设施用地', '使领馆用地', '宗教用地', '文物古迹用地', '监教场所用地', '殡葬用地', '其他特殊用地', '河流水面', '湖泊水面', '水库水面', '坑塘水面', '沟渠', '冰川及常年积雪', '渔业基础设施用海', '增养殖用海', '捕捞海域', '工业用海', '盐田用海', '固体矿产用海', '油气用海', '可再生能源用海', '海底电缆管道用海', '港口用海', '农业设施建设用地', '耕地', '园地', '林地', '工矿用地', '畜禽养殖设施建设用地', '水产养殖设施建设用地', '城镇住宅用地', '草地', '湿地', '留白用地', '陆地水域', '游憩用海', '特殊用海', '特殊用地', '其他海域', '绿地与开敞空间用地', '水田', '水浇地', '旱地', '果园', '茶园', '橡胶园', '其他园地', '乔木林地', '竹林地', '城镇社区服务设施用地', '农村宅基地', '农村社区服务设施用地', '机关团体用地', '科研用地', '文化用地', '教育用地', '体育用地', '医疗卫生用地', '社会福利用地', '商业用地', '商务金融用地', '二类农村宅基地', '图书与展览用地', '文化活动用地', '高等教育用地', '中等职业教育用地', '体育训练用地', '其他交通设施用地', '供水用地', '排水用地', '供电用地', '供燃气用地', '供热用地', '通信用地', '邮政用地', '医院用地', '基层医疗卫生设施用地', '田间道', '盐碱地', '沙地', '裸土地', '裸岩石砾地', '村道用地', '村庄内部道路用地', '渔业用海', '工矿通信用海', '其他土地', '公共管理与公共服务用地', '仓储用地', '交通运输用地', '公用设施用地', '交通运输用海', '航运用海', '路桥隧道用海', '风景旅游用海', '文体休闲娱乐用海', '军事用海', '其他特殊用海', '空闲地', '田坎', '港口码头用地', '管道运输用地', '城市轨道交通用地', '城镇道路用地', '交通场站用地', '一类城镇住宅用地', '二类城镇住宅用地', '三类城镇住宅用地', '一类农村宅基地', '商业服务业用地', '三类工业用地', '一类物流仓储用地', '二类物流仓储用地', '三类物流仓储用地', '盐田', '对外交通场站用地', '公共交通场站用地', '社会停车场用地', '中小学用地', '幼儿园用地', '其他教育用地', '体育场馆用地', '灌木林地', '其他林地', '天然牧草地', '人工牧草地', '其他草地', '森林沼泽', '灌丛沼泽', '沼泽草地', '其他沼泽地', '沿海滩涂', '内陆滩涂', '红树林地', '乡村道路用地', '种植设施建设用地', '娱乐康体用地', '其他商业服务业用地', '工业用地', '采矿用地', '物流仓储用地', '储备库用地', '铁路用地', '公路用地', '机场用地'] json_res = res if json_res != "未找到相关数据": try: json_res = json.loads(json_res) districtName = json_res["districtName"] landType = json_res["landType"] # if landType != "未找到相关数据" and landType != "" and districtName != "未找到相关数据"and districtName != "": if landType in land and districtName in addtress: json_res = jsonResToDict(json_res) else: json_res = "未找到相关数据" json_res = jsonResToDict_wrong(json_res) except: json_res = "未找到相关数据" json_res = jsonResToDict_wrong(json_res) else: json_res = "未找到相关数据" json_res = jsonResToDict_wrong(json_res) elif type == 'answer': json_res = route_query(msg) # 返回响应 return jsonify(json_res) # 将大模型解析的结果转换为选址需要的数据格式 def jsonResToDict(json_res): # 1.查询选址范围信息 districtName = json_res["districtName"] ewkt = getAiDistrict(districtName) # 2.保存选址范围信息 geomId = saveGeom(ewkt) # 3.获取用地类型信息 landType = json_res["landType"] landType = getLandType(landType, "YDYHFLDM") # 4.获取模板信息 factorTemplates = getTemplateByCode(landType) # TODO 以哪个因子列表为准,模版和因子个数怎么匹配 now = datetime.datetime.now() formatted_time = now.strftime("%Y%m%d%H%M%S") res = { "xzmj": 1500, "xmmc": "规划选址项目_"+formatted_time, "jsdw": "建设单位", "ydxz_bsm": landType, "ydmjbegin": json_res["area"]["min"], "ydmjend": json_res["area"]["max"], "geomId": geomId, "yxyz": [], # TODO: 循环遍历 # "yxyz": [ # { # "id": "259e5bbaab434dbfb9c679bd44d4bfa4", # "name": "幼儿园服务半径", # "bsm": "TB_YEY", # "conditionInfo": { # "spatial_type": "distance", # "default": "lt", # "hasValue": true, # "defaultValue": "300", # "unit": "米", # "clip": false # } # } # ], # "useMultiple": json_res["useMultiple"], "useLandType": True, # "multipleDistance": json_res["multipleDistance"] } # 循环遍历输入因子 factors = json_res["factors"] input_factors = {} for factor in factors: factorInfo = getFactorByName(factor["type"]) if factorInfo == None: continue factorId = factorInfo["id"] factorBsm = factorInfo["bsm"] conditionInfo = factorInfo["condition_info"] conditionObj = json.loads(conditionInfo) defaultValue = '0' if "value" in factor: defaultValue = str(factor["value"]) # if defaultValue == '': # defaultValue = '0' factor_info = { "id": factorId, "name": factor["type"], "bsm": factorBsm, "conditionInfo": { "spatial_type": conditionObj["spatial_type"], "default": factor["condition"], "hasValue": conditionObj["hasValue"], "defaultValue": defaultValue, "unit": conditionObj["unit"], "clip": conditionObj["clip"] } } input_factors[factor_info["id"]] = factor_info # 循环遍历模板 for factorTemplate in factorTemplates: factorId = factorTemplate["id"] if factorId in input_factors: res["yxyz"].append(input_factors[factorId]) else: factorTemplate["conditionInfo"] = json.loads( factorTemplate["conditionInfo"]) res["yxyz"].append(factorTemplate) resObj = {} resObj["data"] = res resObj["code"] = 200 resObj["type"] = "selectLand" return resObj # 返回错误信息 def jsonResToDict_wrong(json_res): resObj = {} resObj["data"] = json_res resObj["code"] = 500 resObj["type"] = "selectLand" return resObj # 获取因子信息 def getFactorByName(name): with conn.cursor(cursor_factory=DictCursor) as cur: sql = "SELECT * FROM base.t_fzss_fzxz_factor WHERE name = %s" complete_sql = cur.mogrify(sql, (name,)).decode('utf-8') logger.info(f"Executing SQL: {complete_sql}") cur.execute(sql, (name,)) res = cur.fetchone() return res # 获取内置模板信息 def getTemplateByCode(code): with conn.cursor(cursor_factory=DictCursor) as cur: sql = 'SELECT factor_id as id,factor_name as name,factor_bsm as bsm,condition_info as "conditionInfo" FROM base.t_fzss_fzxz_factor_temp WHERE land_type_code = %s' complete_sql = cur.mogrify(sql, (code,)).decode('utf-8') logger.info(f"Executing SQL: {complete_sql}") cur.execute(sql, (code,)) res = cur.fetchall() # 将查询结果转换为字典列表 result_list = [dict(row) for row in res] return result_list # 获取选址范围信息 def getAiDistrict(name): with conn.cursor(cursor_factory=DictCursor) as cur: sql = "SELECT public.st_asewkt(geom) as geom FROM base.t_fzss_fzxz_ai_district WHERE name = %s" complete_sql = cur.mogrify(sql, (name,)).decode('utf-8') logger.info(f"Executing SQL: {complete_sql}") cur.execute(sql, (name,)) res = cur.fetchone() return res["geom"] # 保存选址范围信息 def saveGeom(ewkt): new_uuid = str(uuid.uuid4()) # 生成一个新的 UUID from_type = 3 with conn.cursor() as cur: sql = "INSERT INTO base.t_fzss_zhxz_file(id,geom,from_type,create_time,area) VALUES (%s,public.st_geomfromewkt(%s),%s,now(),public.st_area(public.st_geomfromewkt(%s)::public.geography))" complete_sql = cur.mogrify( sql, (new_uuid, ewkt, from_type, ewkt)).decode('utf-8') logger.info(f"Executing SQL: {complete_sql}") cur.execute(sql, (new_uuid, ewkt, from_type, ewkt)) conn.commit() return new_uuid # 获取用地类型信息 def getLandType(landName, fzbs): with conn.cursor(cursor_factory=DictCursor) as cur: sql = "SELECT dm,mc,fzbs FROM base.t_fzss_fzxz_dict WHERE mc = %s and fzbs=%s" complete_sql = cur.mogrify(sql, (landName, fzbs)).decode('utf-8') logger.info(f"Executing SQL: {complete_sql}") cur.execute(sql, (landName, fzbs)) res = cur.fetchone() return res["dm"] # getTemplateByCode("08") # getAiDistrict("抱坡区") # ewkt="SRID=4326;POLYGON ((109.568515723151 18.2729002407864, 109.564270326708 18.2607742953866, 109.580087492139 18.2571512198688, 109.588461804591 18.2570597503377, 109.58884305979 18.2645363088176, 109.582107142538 18.2732736518031, 109.568515723151 18.2729002407864))" # saveGeom(ewkt) # getFactorByName("幼儿园服务半径") # msg=voice_text('data/audio/1364627f-5a9b-42d7-b7f6-b99c094606cd.mp3') # msg=vocal_text('data/audio/1364627f-5a9b-42d7-b7f6-b99c094606cd.mp3') # print(msg) if __name__ == '__main__': # app.run() app.run( host='0.0.0.0', port=4000 )