|
@@ -99,27 +99,6 @@ model = AutoModel(model="E:\\yuyin_model\\Voice_translation", model_revision="v2
|
|
|
# model_revision="v2.0.4",
|
|
|
# device='gpu')
|
|
|
|
|
|
-#知识问答
|
|
|
-llm = ChatOllama(model=LLM_MODEL,keep_alive=-1,num_gpu=0)
|
|
|
- # Get the vector database instance
|
|
|
-db = get_vector_db()
|
|
|
-# Get the prompt templates
|
|
|
-QUERY_PROMPT, prompt = get_prompt()
|
|
|
-
|
|
|
-# Set up the retriever to generate multiple queries using the language model and the query prompt
|
|
|
-retriever = MultiQueryRetriever.from_llm(
|
|
|
- db.as_retriever(),
|
|
|
- llm,
|
|
|
- prompt=QUERY_PROMPT
|
|
|
-)
|
|
|
-
|
|
|
-# Define the processing chain to retrieve context, generate the answer, and parse the output
|
|
|
-chain = (
|
|
|
- {"context": retriever, "question": RunnablePassthrough()}
|
|
|
- | prompt
|
|
|
- | llm
|
|
|
- | StrOutputParser()
|
|
|
-)
|
|
|
|
|
|
|
|
|
# 后台接口
|
|
@@ -149,15 +128,14 @@ def route_embed():
|
|
|
def route_query(msg):
|
|
|
response = query(msg)
|
|
|
# print(response)
|
|
|
- if response:
|
|
|
- resObj = {}
|
|
|
- resObj["data"] = response
|
|
|
- resObj["code"] = 200
|
|
|
- resObj["type"] = "answer"
|
|
|
-
|
|
|
- return resObj
|
|
|
-
|
|
|
- return {"error": "Something went wrong"}, 400
|
|
|
+ # if response:
|
|
|
+ # resObj = {}
|
|
|
+ # resObj["data"] = response
|
|
|
+ # resObj["code"] = 200
|
|
|
+ # resObj["type"] = "answer"
|
|
|
+ # return resObj
|
|
|
+ # return {"error": "Something went wrong"}, 400
|
|
|
+ return response
|
|
|
|
|
|
@app.route('/delete', methods=['DELETE'])
|
|
|
def route_delete():
|