|  | @@ -1,58 +1,58 @@
 | 
	
		
			
				|  |  | -from modelscope.pipelines import pipeline
 | 
	
		
			
				|  |  | -from modelscope.utils.constant import Tasks
 | 
	
		
			
				|  |  | -import time
 | 
	
		
			
				|  |  | -import torch
 | 
	
		
			
				|  |  | +# from modelscope.pipelines import pipeline
 | 
	
		
			
				|  |  | +# from modelscope.utils.constant import Tasks
 | 
	
		
			
				|  |  | +# import time
 | 
	
		
			
				|  |  | +# import torch
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -# print(torch.__version__) # 查看torch当前版本号
 | 
	
		
			
				|  |  | +# # print(torch.__version__) # 查看torch当前版本号
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -# print(torch.version.cuda) # 编译当前版本的torch使用的cuda版本号
 | 
	
		
			
				|  |  | +# # print(torch.version.cuda) # 编译当前版本的torch使用的cuda版本号
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -# print(torch.cuda.is_available()) # 查看当前cuda是否可用于当前版本的Torch,如果输出True,则表示可用
 | 
	
		
			
				|  |  | +# # print(torch.cuda.is_available()) # 查看当前cuda是否可用于当前版本的Torch,如果输出True,则表示可用
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -def voice_text(input_video_path,model='iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch'):
 | 
	
		
			
				|  |  | -    inference_pipeline = pipeline(
 | 
	
		
			
				|  |  | -    task=Tasks.auto_speech_recognition,
 | 
	
		
			
				|  |  | -    # model='iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
 | 
	
		
			
				|  |  | -    model=model, 
 | 
	
		
			
				|  |  | -    # model="model\punc_ct-transformer_cn-en-common-vocab471067-large",
 | 
	
		
			
				|  |  | -    model_revision="v2.0.4",
 | 
	
		
			
				|  |  | -    device='gpu')
 | 
	
		
			
				|  |  | -    
 | 
	
		
			
				|  |  | -    res = inference_pipeline(input_video_path)
 | 
	
		
			
				|  |  | -    # print(res)
 | 
	
		
			
				|  |  | -    texts = [item['text'] for item in res]
 | 
	
		
			
				|  |  | +# def voice_text(input_video_path,model='iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch'):
 | 
	
		
			
				|  |  | +#     inference_pipeline = pipeline(
 | 
	
		
			
				|  |  | +#     task=Tasks.auto_speech_recognition,
 | 
	
		
			
				|  |  | +#     # model='iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
 | 
	
		
			
				|  |  | +#     model=model,
 | 
	
		
			
				|  |  | +#     # model="model\punc_ct-transformer_cn-en-common-vocab471067-large",
 | 
	
		
			
				|  |  | +#     model_revision="v2.0.4",
 | 
	
		
			
				|  |  | +#     device='gpu')
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    # print(texts)
 | 
	
		
			
				|  |  | -    result = ' '.join(texts)
 | 
	
		
			
				|  |  | -    return result
 | 
	
		
			
				|  |  | +#     res = inference_pipeline(input_video_path)
 | 
	
		
			
				|  |  | +#     # print(res)
 | 
	
		
			
				|  |  | +#     texts = [item['text'] for item in res]
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -if  __name__ == "__main__":
 | 
	
		
			
				|  |  | -    start_time = time.time()
 | 
	
		
			
				|  |  | -    inference_pipeline = pipeline(
 | 
	
		
			
				|  |  | -        task=Tasks.auto_speech_recognition,
 | 
	
		
			
				|  |  | -        # model='iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
 | 
	
		
			
				|  |  | -        model='iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch', 
 | 
	
		
			
				|  |  | -        # model="model\punc_ct-transformer_cn-en-common-vocab471067-large",
 | 
	
		
			
				|  |  | -        model_revision="v2.0.4",
 | 
	
		
			
				|  |  | -        device='gpu')
 | 
	
		
			
				|  |  | +#     # print(texts)
 | 
	
		
			
				|  |  | +#     result = ' '.join(texts)
 | 
	
		
			
				|  |  | +#     return result
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    # rec_result = inference_pipeline('https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_vad_punc_example.wav')
 | 
	
		
			
				|  |  | +# if  __name__ == "__main__":
 | 
	
		
			
				|  |  | +#     start_time = time.time()
 | 
	
		
			
				|  |  | +#     inference_pipeline = pipeline(
 | 
	
		
			
				|  |  | +#         task=Tasks.auto_speech_recognition,
 | 
	
		
			
				|  |  | +#         # model='iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
 | 
	
		
			
				|  |  | +#         model='iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
 | 
	
		
			
				|  |  | +#         # model="model\punc_ct-transformer_cn-en-common-vocab471067-large",
 | 
	
		
			
				|  |  | +#         model_revision="v2.0.4",
 | 
	
		
			
				|  |  | +#         device='gpu')
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    # 替换为本地语音文件路径
 | 
	
		
			
				|  |  | -    local_audio_path = 'data/audio/5bf77846-0193-4f35-92f7-09ce51ee3793.mp3'
 | 
	
		
			
				|  |  | -    res = inference_pipeline(local_audio_path)
 | 
	
		
			
				|  |  | -    # print(res)
 | 
	
		
			
				|  |  | -    texts = [item['text'] for item in res]
 | 
	
		
			
				|  |  | +#     # rec_result = inference_pipeline('https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_vad_punc_example.wav')
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    # print(texts)
 | 
	
		
			
				|  |  | -    result = ' '.join(texts)
 | 
	
		
			
				|  |  | -    print(result)
 | 
	
		
			
				|  |  | +#     # 替换为本地语音文件路径
 | 
	
		
			
				|  |  | +#     local_audio_path = 'data/audio/5bf77846-0193-4f35-92f7-09ce51ee3793.mp3'
 | 
	
		
			
				|  |  | +#     res = inference_pipeline(local_audio_path)
 | 
	
		
			
				|  |  | +#     # print(res)
 | 
	
		
			
				|  |  | +#     texts = [item['text'] for item in res]
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | +#     # print(texts)
 | 
	
		
			
				|  |  | +#     result = ' '.join(texts)
 | 
	
		
			
				|  |  | +#     print(result)
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    end_time = time.time()
 | 
	
		
			
				|  |  | -    # 计算时间差
 | 
	
		
			
				|  |  | -    elapsed_time = end_time - start_time
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    print(f"耗时: {elapsed_time} 秒")
 | 
	
		
			
				|  |  | +#     end_time = time.time()
 | 
	
		
			
				|  |  | +#     # 计算时间差
 | 
	
		
			
				|  |  | +#     elapsed_time = end_time - start_time
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#     print(f"耗时: {elapsed_time} 秒")
 |