123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 |
- """
- ***************************************************************************
- RandomSelectionWithinSubsets.py
- ---------------------
- Date : August 2012
- Copyright : (C) 2012 by Victor Olaya
- Email : volayaf at gmail dot com
- ***************************************************************************
- * *
- * This program is free software; you can redistribute it and/or modify *
- * it under the terms of the GNU General Public License as published by *
- * the Free Software Foundation; either version 2 of the License, or *
- * (at your option) any later version. *
- * *
- ***************************************************************************
- """
- __author__ = 'Victor Olaya'
- __date__ = 'August 2012'
- __copyright__ = '(C) 2012, Victor Olaya'
- import random
- from qgis.core import (QgsFeatureSink,
- QgsProcessingException,
- QgsProcessingParameterFeatureSource,
- QgsProcessingParameterEnum,
- QgsProcessingParameterField,
- QgsProcessingParameterNumber,
- QgsProcessingParameterFeatureSink,
- QgsProcessingFeatureSource,
- QgsFeatureRequest)
- from collections import defaultdict
- from processing.algs.qgis.QgisAlgorithm import QgisAlgorithm
- class RandomExtractWithinSubsets(QgisAlgorithm):
- INPUT = 'INPUT'
- METHOD = 'METHOD'
- NUMBER = 'NUMBER'
- FIELD = 'FIELD'
- OUTPUT = 'OUTPUT'
- def group(self):
- return self.tr('Vector selection')
- def groupId(self):
- return 'vectorselection'
- def __init__(self):
- super().__init__()
- def initAlgorithm(self, config=None):
- self.methods = [self.tr('Number of selected features'),
- self.tr('Percentage of selected features')]
- self.addParameter(QgsProcessingParameterFeatureSource(self.INPUT,
- self.tr('Input layer')))
- self.addParameter(QgsProcessingParameterField(self.FIELD,
- self.tr('ID field'), None, self.INPUT))
- self.addParameter(QgsProcessingParameterEnum(self.METHOD,
- self.tr('Method'), self.methods, False, 0))
- self.addParameter(QgsProcessingParameterNumber(self.NUMBER,
- self.tr('Number/percentage of selected features'), QgsProcessingParameterNumber.Integer,
- 10, False, 0.0))
- self.addParameter(QgsProcessingParameterFeatureSink(self.OUTPUT, self.tr('Extracted (random stratified)')))
- def name(self):
- return 'randomextractwithinsubsets'
- def displayName(self):
- return self.tr('Random extract within subsets')
- def processAlgorithm(self, parameters, context, feedback):
- source = self.parameterAsSource(parameters, self.INPUT, context)
- if source is None:
- raise QgsProcessingException(self.invalidSourceError(parameters, self.INPUT))
- method = self.parameterAsEnum(parameters, self.METHOD, context)
- field = self.parameterAsString(parameters, self.FIELD, context)
- index = source.fields().lookupField(field)
- features = source.getFeatures(QgsFeatureRequest(), QgsProcessingFeatureSource.FlagSkipGeometryValidityChecks)
- featureCount = source.featureCount()
- unique = source.uniqueValues(index)
- value = self.parameterAsInt(parameters, self.NUMBER, context)
- if method == 0:
- if value > featureCount:
- raise QgsProcessingException(
- self.tr('Selected number is greater that feature count. '
- 'Choose lesser value and try again.'))
- else:
- if value > 100:
- raise QgsProcessingException(
- self.tr("Percentage can't be greater than 100. Set "
- "correct value and try again."))
- value = value / 100.0
- (sink, dest_id) = self.parameterAsSink(parameters, self.OUTPUT, context,
- source.fields(), source.wkbType(), source.sourceCrs())
- if sink is None:
- raise QgsProcessingException(self.invalidSinkError(parameters, self.OUTPUT))
- selran = []
- total = 100.0 / (featureCount * len(unique)) if featureCount else 1
- classes = defaultdict(list)
- for i, feature in enumerate(features):
- if feedback.isCanceled():
- break
- attrs = feature.attributes()
- classes[attrs[index]].append(feature)
- feedback.setProgress(int(i * total))
- for k, subset in classes.items():
- selValue = value if method != 1 else int(round(value * len(subset), 0))
- if selValue > len(subset):
- selValue = len(subset)
- feedback.reportError(self.tr(
- 'Subset "{}" is smaller than requested number of features.').format(k))
- selran.extend(random.sample(subset, selValue))
- total = 100.0 / featureCount if featureCount else 1
- for (i, feat) in enumerate(selran):
- if feedback.isCanceled():
- break
- sink.addFeature(feat, QgsFeatureSink.FastInsert)
- feedback.setProgress(int(i * total))
- return {self.OUTPUT: dest_id}
|