RandomExtractWithinSubsets.py 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135
  1. """
  2. ***************************************************************************
  3. RandomSelectionWithinSubsets.py
  4. ---------------------
  5. Date : August 2012
  6. Copyright : (C) 2012 by Victor Olaya
  7. Email : volayaf at gmail dot com
  8. ***************************************************************************
  9. * *
  10. * This program is free software; you can redistribute it and/or modify *
  11. * it under the terms of the GNU General Public License as published by *
  12. * the Free Software Foundation; either version 2 of the License, or *
  13. * (at your option) any later version. *
  14. * *
  15. ***************************************************************************
  16. """
  17. __author__ = 'Victor Olaya'
  18. __date__ = 'August 2012'
  19. __copyright__ = '(C) 2012, Victor Olaya'
  20. import random
  21. from qgis.core import (QgsFeatureSink,
  22. QgsProcessingException,
  23. QgsProcessingParameterFeatureSource,
  24. QgsProcessingParameterEnum,
  25. QgsProcessingParameterField,
  26. QgsProcessingParameterNumber,
  27. QgsProcessingParameterFeatureSink,
  28. QgsProcessingFeatureSource,
  29. QgsFeatureRequest)
  30. from collections import defaultdict
  31. from processing.algs.qgis.QgisAlgorithm import QgisAlgorithm
  32. class RandomExtractWithinSubsets(QgisAlgorithm):
  33. INPUT = 'INPUT'
  34. METHOD = 'METHOD'
  35. NUMBER = 'NUMBER'
  36. FIELD = 'FIELD'
  37. OUTPUT = 'OUTPUT'
  38. def group(self):
  39. return self.tr('Vector selection')
  40. def groupId(self):
  41. return 'vectorselection'
  42. def __init__(self):
  43. super().__init__()
  44. def initAlgorithm(self, config=None):
  45. self.methods = [self.tr('Number of selected features'),
  46. self.tr('Percentage of selected features')]
  47. self.addParameter(QgsProcessingParameterFeatureSource(self.INPUT,
  48. self.tr('Input layer')))
  49. self.addParameter(QgsProcessingParameterField(self.FIELD,
  50. self.tr('ID field'), None, self.INPUT))
  51. self.addParameter(QgsProcessingParameterEnum(self.METHOD,
  52. self.tr('Method'), self.methods, False, 0))
  53. self.addParameter(QgsProcessingParameterNumber(self.NUMBER,
  54. self.tr('Number/percentage of selected features'), QgsProcessingParameterNumber.Integer,
  55. 10, False, 0.0))
  56. self.addParameter(QgsProcessingParameterFeatureSink(self.OUTPUT, self.tr('Extracted (random stratified)')))
  57. def name(self):
  58. return 'randomextractwithinsubsets'
  59. def displayName(self):
  60. return self.tr('Random extract within subsets')
  61. def processAlgorithm(self, parameters, context, feedback):
  62. source = self.parameterAsSource(parameters, self.INPUT, context)
  63. if source is None:
  64. raise QgsProcessingException(self.invalidSourceError(parameters, self.INPUT))
  65. method = self.parameterAsEnum(parameters, self.METHOD, context)
  66. field = self.parameterAsString(parameters, self.FIELD, context)
  67. index = source.fields().lookupField(field)
  68. features = source.getFeatures(QgsFeatureRequest(), QgsProcessingFeatureSource.FlagSkipGeometryValidityChecks)
  69. featureCount = source.featureCount()
  70. unique = source.uniqueValues(index)
  71. value = self.parameterAsInt(parameters, self.NUMBER, context)
  72. if method == 0:
  73. if value > featureCount:
  74. raise QgsProcessingException(
  75. self.tr('Selected number is greater that feature count. '
  76. 'Choose lesser value and try again.'))
  77. else:
  78. if value > 100:
  79. raise QgsProcessingException(
  80. self.tr("Percentage can't be greater than 100. Set "
  81. "correct value and try again."))
  82. value = value / 100.0
  83. (sink, dest_id) = self.parameterAsSink(parameters, self.OUTPUT, context,
  84. source.fields(), source.wkbType(), source.sourceCrs())
  85. if sink is None:
  86. raise QgsProcessingException(self.invalidSinkError(parameters, self.OUTPUT))
  87. selran = []
  88. total = 100.0 / (featureCount * len(unique)) if featureCount else 1
  89. classes = defaultdict(list)
  90. for i, feature in enumerate(features):
  91. if feedback.isCanceled():
  92. break
  93. attrs = feature.attributes()
  94. classes[attrs[index]].append(feature)
  95. feedback.setProgress(int(i * total))
  96. for k, subset in classes.items():
  97. selValue = value if method != 1 else int(round(value * len(subset), 0))
  98. if selValue > len(subset):
  99. selValue = len(subset)
  100. feedback.reportError(self.tr(
  101. 'Subset "{}" is smaller than requested number of features.').format(k))
  102. selran.extend(random.sample(subset, selValue))
  103. total = 100.0 / featureCount if featureCount else 1
  104. for (i, feat) in enumerate(selran):
  105. if feedback.isCanceled():
  106. break
  107. sink.addFeature(feat, QgsFeatureSink.FastInsert)
  108. feedback.setProgress(int(i * total))
  109. return {self.OUTPUT: dest_id}