# -*- coding: utf-8 -*- __author__ = 'wanger' __description__ = '按照掩膜范围裁剪栅格数据' __date__ = '2024-11-25' __copyright__ = '(C) 2024 by siwei' __revision__ = '1.0' import subprocess from qgis._core import QgsProcessingParameterFolderDestination from qgis.core import ( QgsRasterLayer, ) from qgis.PyQt.QtCore import QCoreApplication from qgis.core import (QgsVectorLayer, QgsProcessingAlgorithm, QgsProcessingParameterFile) class ClipRasterByMaskProcessingAlgorithm(QgsProcessingAlgorithm): INPUT_SHP = 'INPUT_SHP' INPUT_RASTER = 'INPUT_RASTER' OUTPUT = 'OUTPUT' def tr(self, string): return QCoreApplication.translate('Processing', string) def createInstance(self): return ClipRasterByMaskProcessingAlgorithm() def name(self): return 'cliprasterbymask' def displayName(self): return self.tr('栅格裁剪') def group(self): return self.tr('栅格裁剪') def groupId(self): return 'rasterclip' def shortHelpString(self): return self.tr("遍历输入shp数据要素裁剪输入栅格,保存到输出文件夹。") def initAlgorithm(self, config=None): self.addParameter(QgsProcessingParameterFile( self.INPUT_SHP, '网格数据', extension='shp' )) self.addParameter(QgsProcessingParameterFile( self.INPUT_RASTER, '栅格数据', extension='tif' )) self.addParameter(QgsProcessingParameterFolderDestination(self.OUTPUT, '输出文件夹')) # 执行 def processAlgorithm(self, parameters, context, feedback): input_shp = self.parameterAsString(parameters, self.INPUT_SHP, context) input_raster = self.parameterAsOutputLayer(parameters, self.INPUT_RASTER, context) output_raster = self.parameterAsString(parameters, self.OUTPUT, context) # 加载输入Shapefile和栅格数据 vector_layer = QgsVectorLayer(input_shp, "vector_layer", "ogr") raster_layer = QgsRasterLayer(input_raster, "raster_layer") fields = vector_layer.fields() # 获取分辨率(像素大小) pixel_width = raster_layer.rasterUnitsPerPixelX() pixel_height = raster_layer.rasterUnitsPerPixelY() # 遍历输入图层的所有要素,并为每个要素保存一个单独的Shapefile文件 total = 0 for idx, feature in enumerate(vector_layer.getFeatures()): # 获取当前要素的几何数据 geometry = feature.geometry() key = feature["新图号"] extent = geometry.boundingBox() # 计算裁剪范围的整数倍,确保裁剪范围对齐 minX = extent.xMinimum() maxX = extent.xMaximum() minY = extent.yMinimum() maxY = extent.yMaximum() # 通过对齐最大值,确保裁剪范围完整 maxX_aligned = maxX + pixel_width maxY_aligned = maxY + pixel_width minX_aligned = minX - pixel_width minY_aligned = minY - pixel_width # 设置 gdal_translate 命令和参数 gdal_translate_cmd = [ 'gdal_translate', # GDAL 工具名称 '-projwin', str(minX_aligned), str(maxY_aligned), str(maxX_aligned), str(minY_aligned), # 裁剪范围(minX, maxY, maxX, minY) '-of', 'GTiff', # 输出格式为 GeoTIFF input_raster, # 输入栅格文件路径 f"{output_raster}\\{key}.tif" # 输出文件路径 ] print(gdal_translate_cmd) # 运行命令 try: subprocess.run(gdal_translate_cmd, check=True) print("gdal_translate 执行成功!") total = total + 1 except subprocess.CalledProcessError as e: print(f"gdal_translate 执行失败: {e}") return { "状态": f"处理成功,共裁剪出{total}块栅格数据。" }