123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 |
- import paddlers as pdrs
- from paddlers import transforms as T
- DATA_DIR = "./data/dota/"
- ANNO_PATH = "trainval1024/DOTA_trainval1024.json"
- IMAGE_DIR = "trainval1024/images"
- EXP_DIR = "./output/ppyoloe_r/"
- IMAGE_SIZE = [1024, 1024]
- pdrs.utils.download_and_decompress(
- "https://paddlers.bj.bcebos.com/datasets/dota.zip", path="./data/")
- train_transforms = [
-
- T.DecodeImg(),
-
- T.Poly2Array(),
-
- T.RandomRFlip(),
-
- T.RandomRRotate(
- angle_mode='value', angle=[0, 90, 180, -90]),
-
- T.RandomRRotate(
- angle_mode='value', angle=[30, 60], rotate_prob=0.5),
-
- T.RResize(
- target_size=IMAGE_SIZE, keep_ratio=True, interp=2),
-
- T.Poly2RBox(
- filter_threshold=2, filter_mode='edge', rbox_type="oc"),
- ]
- train_batch_transforms = [
-
- T.BatchNormalizeImage(
- mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
- ]
- eval_transforms = [
- T.DecodeImg(),
-
- T.Poly2Array(),
-
- T.RResize(
- target_size=IMAGE_SIZE, keep_ratio=True, interp=2),
-
- T.Normalize(
- mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
- ]
- train_dataset = pdrs.datasets.COCODetDataset(
- data_dir=DATA_DIR,
- image_dir=IMAGE_DIR,
- anno_path=ANNO_PATH,
- transforms=train_transforms,
- batch_transforms=train_batch_transforms,
- shuffle=True)
- eval_dataset = pdrs.datasets.COCODetDataset(
- data_dir=DATA_DIR,
- image_dir=IMAGE_DIR,
- anno_path=ANNO_PATH,
- transforms=eval_transforms,
- shuffle=False)
- model = pdrs.tasks.det.PPYOLOE_R(
- backbone="CSPResNet_m",
- num_classes=15,
- nms_score_threshold=0.1,
- nms_topk=2000,
- nms_keep_topk=-1,
- nms_normalized=False,
- nms_iou_threshold=0.1)
- model.train(
- num_epochs=36,
- train_dataset=train_dataset,
- train_batch_size=2,
- eval_dataset=eval_dataset,
-
- save_interval_epochs=5,
-
- log_interval_steps=4,
- metric='rbox',
- save_dir=EXP_DIR,
-
- scheduler='Cosine',
-
- cosine_decay_num_epochs=44,
-
- learning_rate=0.008,
-
- warmup_steps=100,
-
- warmup_start_lr=0.,
-
- lr_decay_epochs=[24, 33],
-
- lr_decay_gamma=0.1,
-
- reg_coeff=0.0005,
-
- clip_grad_by_norm=35.,
-
- pretrain_weights="IMAGENET",
-
- use_vdl=True)
|