predict_tuban.py 1.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748
  1. from paddlers.deploy import Predictor
  2. import numpy as np
  3. import rasterio
  4. from rasterio.transform import from_bounds
  5. import os
  6. # 模型路径
  7. model_dir = "E:/PaddleRS-1.0.0/inference_model"
  8. assert os.path.exists(model_dir), "模型路径无效!"
  9. # 构建Predictor
  10. predictor = Predictor(model_dir, use_gpu=True)
  11. # 输入影像路径
  12. img1_path = "E:/PaddleRS-1.0.0/data/tuban/test/A/4301812024070509180603.tif"
  13. img2_path = "E:/PaddleRS-1.0.0/data/tuban/test/B/4301812024070509180603.tif"
  14. assert os.path.exists(img1_path), "前时相影像不存在!"
  15. assert os.path.exists(img2_path), "后时相影像不存在!"
  16. # 执行推理
  17. res = predictor.predict((img1_path, img2_path), warmup_iters=5, repeats=1)
  18. # 检查结果
  19. assert 'label_map' in res, "推理结果中缺少label_map键!"
  20. cm = res['label_map'] # 变化检测结果(numpy 数组)
  21. # 读取输入影像的地理信息
  22. with rasterio.open(img1_path) as src:
  23. # 获取输入影像的地理信息
  24. profile = src.profile # 包括 CRS、变换信息、元数据等
  25. transform = src.transform
  26. crs = src.crs # 坐标参考系
  27. # 更新输出影像的 profile(元数据)
  28. profile.update(
  29. dtype=rasterio.uint8, # 数据类型
  30. count=1, # 单波段
  31. compress='lzw', # 压缩方式
  32. driver='GTiff' # 输出格式为 GeoTIFF
  33. )
  34. # 保存变化检测结果为 GeoTIFF
  35. output_path = "E:/PaddleRS/predict/change_map.tif"
  36. with rasterio.open(output_path, 'w', **profile) as dst:
  37. # 写入变化检测结果
  38. dst.write(np.uint8(cm), 1) # 将数据写入第1个波段
  39. print(f"变化检测结果已保存为:{output_path}")