model.yml 1.2 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283
  1. Model: MobileNetV3
  2. Transforms:
  3. - Resize:
  4. interp: LINEAR
  5. keep_ratio: false
  6. target_size: !!python/tuple
  7. - 256
  8. - 256
  9. - Normalize:
  10. apply_to_tar: true
  11. max_val:
  12. - 255.0
  13. - 255.0
  14. - 255.0
  15. mean:
  16. - 0.5
  17. - 0.5
  18. - 0.5
  19. min_val:
  20. - 0
  21. - 0
  22. - 0
  23. std:
  24. - 0.5
  25. - 0.5
  26. - 0.5
  27. _Attributes:
  28. best_accuracy: !!python/object/apply:numpy.core.multiarray.scalar
  29. - !!python/object/apply:numpy.dtype
  30. args:
  31. - f4
  32. - false
  33. - true
  34. state: !!python/tuple
  35. - 3
  36. - <
  37. - null
  38. - null
  39. - null
  40. - -1
  41. - -1
  42. - 0
  43. - !!binary |
  44. mH95Pw==
  45. best_model_epoch: 2
  46. eval_metrics:
  47. top1: 0.9746031761169434
  48. fixed_input_shape: null
  49. in_channels: 3
  50. labels:
  51. - agricultural
  52. - airplane
  53. - baseballdiamond
  54. - beach
  55. - buildings
  56. - chaparral
  57. - denseresidential
  58. - forest
  59. - freeway
  60. - golfcourse
  61. - harbor
  62. - intersection
  63. - mediumresidential
  64. - mobilehomepark
  65. - overpass
  66. - parkinglot
  67. - river
  68. - runway
  69. - sparseresidential
  70. - storagetanks
  71. - tenniscourt
  72. model_type: classifier
  73. num_classes: 21
  74. _init_params:
  75. in_channels: 3
  76. losses: null
  77. num_classes: 21
  78. use_mixed_loss: false
  79. completed_epochs: 2
  80. raw_params:
  81. num_classes: 21
  82. status: Normal
  83. version: 2.2.0