1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192 |
- #!/usr/bin/env python
- # 目标检测模型YOLOv3训练示例脚本
- # 执行此脚本前,请确认已正确安装PaddleRS库
- import paddlers as pdrs
- from paddlers import transforms as T
- # 数据集存放目录
- DATA_DIR = './data/sarship/'
- # 训练集`file_list`文件路径
- TRAIN_FILE_LIST_PATH = './data/sarship/train.txt'
- # 验证集`file_list`文件路径
- EVAL_FILE_LIST_PATH = './data/sarship/eval.txt'
- # 数据集类别信息文件路径
- LABEL_LIST_PATH = './data/sarship/labels.txt'
- # 实验目录,保存输出的模型权重和结果
- EXP_DIR = './output/yolov3/'
- # 下载和解压SAR影像舰船检测数据集
- pdrs.utils.download_and_decompress(
- 'https://paddlers.bj.bcebos.com/datasets/sarship.zip', path='./data/')
- # 定义训练和验证时使用的数据变换(数据增强、预处理等)
- # 使用Compose组合多种变换方式。Compose中包含的变换将按顺序串行执行
- # API说明:https://github.com/PaddlePaddle/PaddleRS/blob/develop/docs/apis/data.md
- train_transforms = [
- # 随机裁剪,裁块大小在一定范围内变动
- T.RandomCrop(),
- # 随机水平翻转
- T.RandomHorizontalFlip(),
- # 影像归一化
- T.Normalize(
- mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
- ]
- # 定义作用在一个批次数据上的变换
- train_batch_transforms = [
- # 对batch进行随机缩放,随机选择插值方式
- T.BatchRandomResize(
- target_sizes=[512, 544, 576, 608], interp='RANDOM'),
- ]
- eval_transforms = [
- # 使用双三次插值将输入影像缩放到固定大小
- T.Resize(
- target_size=608, interp='CUBIC'),
- # 验证阶段与训练阶段的归一化方式必须相同
- T.Normalize(
- mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
- ]
- # 分别构建训练和验证所用的数据集
- train_dataset = pdrs.datasets.VOCDetDataset(
- data_dir=DATA_DIR,
- file_list=TRAIN_FILE_LIST_PATH,
- label_list=LABEL_LIST_PATH,
- transforms=train_transforms,
- batch_transforms=train_batch_transforms,
- shuffle=True)
- eval_dataset = pdrs.datasets.VOCDetDataset(
- data_dir=DATA_DIR,
- file_list=EVAL_FILE_LIST_PATH,
- label_list=LABEL_LIST_PATH,
- transforms=eval_transforms,
- shuffle=False)
- # 构建YOLOv3模型,使用DarkNet53作为backbone
- # 目前已支持的模型请参考:https://github.com/PaddlePaddle/PaddleRS/blob/develop/docs/intro/model_zoo.md
- # 模型输入参数请参考:https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/object_detector.py
- model = pdrs.tasks.det.YOLOv3(
- num_classes=len(train_dataset.labels), backbone='DarkNet53')
- # 执行模型训练
- model.train(
- num_epochs=10,
- train_dataset=train_dataset,
- train_batch_size=4,
- eval_dataset=eval_dataset,
- # 每多少个epoch存储一次检查点
- save_interval_epochs=5,
- # 每多少次迭代记录一次日志
- log_interval_steps=4,
- save_dir=EXP_DIR,
- # 初始学习率大小
- learning_rate=0.0001,
- # 学习率预热(learning rate warm-up)步数与初始值
- warmup_steps=0,
- warmup_start_lr=0.0,
- # 是否启用VisualDL日志功能
- use_vdl=True)
|