123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 |
- #!/usr/bin/env python
- # 旋转目标检测模型PPYOLOE-R训练示例脚本
- # 执行此脚本前,请确认已正确安装PaddleRS库
- import paddlers as pdrs
- from paddlers import transforms as T
- # 数据集存放目录
- DATA_DIR = "./data/dota/"
- # 数据集标签文件路径
- ANNO_PATH = "trainval1024/DOTA_trainval1024.json"
- # 数据集图像目录
- IMAGE_DIR = "trainval1024/images"
- # 实验目录,保存输出的模型权重和结果
- EXP_DIR = "./output/ppyoloe_r/"
- IMAGE_SIZE = [1024, 1024]
- # 下载和解压SAR影像舰船检测数据集
- pdrs.utils.download_and_decompress(
- "https://paddlers.bj.bcebos.com/datasets/dota.zip", path="./data/")
- # 对于旋转目标检测任务,需要安装自定义外部算子库,安装方式如下:
- # cd paddlers/models/ppdet/ext_op
- # python setup.py install
- # 定义训练和验证时使用的数据变换(数据增强、预处理等)
- # 使用Compose组合多种变换方式。Compose中包含的变换将按顺序串行执行
- # API说明:https://github.com/PaddlePaddle/PaddleRS/blob/develop/docs/apis/data.md
- train_transforms = [
- # 读取影像
- T.DecodeImg(),
- # 将标签转换为numpy array
- T.Poly2Array(),
- # 随机水平翻转
- T.RandomRFlip(),
- # 随机旋转
- T.RandomRRotate(
- angle_mode='value', angle=[0, 90, 180, -90]),
- # 随机旋转
- T.RandomRRotate(
- angle_mode='value', angle=[30, 60], rotate_prob=0.5),
- # 随机缩放图片
- T.RResize(
- target_size=IMAGE_SIZE, keep_ratio=True, interp=2),
- # 将标签转换为rotated box的格式
- T.Poly2RBox(
- filter_threshold=2, filter_mode='edge', rbox_type="oc"),
- ]
- train_batch_transforms = [
- # 归一化图像
- T.BatchNormalizeImage(
- mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
- ]
- eval_transforms = [
- T.DecodeImg(),
- # 将标签转换为numpy array
- T.Poly2Array(),
- # 随机缩放图片
- T.RResize(
- target_size=IMAGE_SIZE, keep_ratio=True, interp=2),
- # 归一化图像
- T.Normalize(
- mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
- ]
- # 分别构建训练和验证所用的数据集
- train_dataset = pdrs.datasets.COCODetDataset(
- data_dir=DATA_DIR,
- image_dir=IMAGE_DIR,
- anno_path=ANNO_PATH,
- transforms=train_transforms,
- batch_transforms=train_batch_transforms,
- shuffle=True)
- eval_dataset = pdrs.datasets.COCODetDataset(
- data_dir=DATA_DIR,
- image_dir=IMAGE_DIR,
- anno_path=ANNO_PATH,
- transforms=eval_transforms,
- shuffle=False)
- # 构建YOLOE-R模型
- # 使用如下方式查看PPYOLOE-R支持的backbone
- # print(pdrs.tasks.det.PPYOLOE_R.supported_backbones)
- # 目前已支持的模型请参考:https://github.com/PaddlePaddle/PaddleRS/blob/develop/docs/intro/model_zoo.md
- model = pdrs.tasks.det.PPYOLOE_R(
- backbone="CSPResNet_m",
- num_classes=15,
- nms_score_threshold=0.1,
- nms_topk=2000,
- nms_keep_topk=-1,
- nms_normalized=False,
- nms_iou_threshold=0.1)
- # 执行模型训练
- model.train(
- num_epochs=36,
- train_dataset=train_dataset,
- train_batch_size=2,
- eval_dataset=eval_dataset,
- # 每多少个epoch存储一次检查点
- save_interval_epochs=5,
- # 每多少次迭代记录一次日志
- log_interval_steps=4,
- metric='rbox',
- save_dir=EXP_DIR,
- # 使用余弦退火学习率调度器
- scheduler='Cosine',
- # 学习率调度器的参数
- cosine_decay_num_epochs=44,
- # 初始学习率大小,请根据此公式适当调整learning_rate:(train_batch_size * gpu_nums) / (2 * 4) * 0.01
- learning_rate=0.008,
- # 学习率预热(learning rate warm-up)步数
- warmup_steps=100,
- # 初始学习率大小
- warmup_start_lr=0.,
- # 学习率衰减的epoch节点
- lr_decay_epochs=[24, 33],
- # 学习率衰减的参数
- lr_decay_gamma=0.1,
- # L2正则化系数
- reg_coeff=0.0005,
- # 梯度裁剪策略的参数
- clip_grad_by_norm=35.,
- # 指定预训练权重
- pretrain_weights="IMAGENET",
- # 是否启用VisualDL日志功能
- use_vdl=True)
|