123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123 |
- # Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import copy
- from PIL import Image
- import numpy as np
- import paddle
- import paddlers.utils.postprocs as P
- from testing_utils import CpuCommonTest
- __all__ = ['TestPostProgress']
- class TestPostProgress(CpuCommonTest):
- def setUp(self):
- self.image1 = np.asarray(Image.open("data/ssmt/optical_t2.bmp"))
- self.image2 = np.asarray(Image.open("data/ssmt/optical_t2.bmp"))
- self.b_label = np.asarray(Image.open("data/ssmt/binary_gt.bmp")).clip(0,
- 1)
- self.m_label = np.asarray(Image.open("data/ssmt/multiclass_gt2.png"))
- def test_prepro_mask(self):
- mask = copy.deepcopy(self.b_label)
- mask = P.prepro_mask(mask)
- self.check_output_equal(len(mask.shape), 2)
- self.assertEqual(mask.dtype, np.uint8)
- self.check_output_equal(np.unique(mask), np.array([0, 1]))
- mask_tensor = paddle.randn((1, 3, 256, 256), dtype="float32")
- mask_tensor = P.prepro_mask(mask_tensor)
- self.check_output_equal(len(mask_tensor.shape), 2)
- self.assertEqual(mask_tensor.dtype, np.uint8)
- self.check_output_equal(np.unique(mask_tensor), np.array([0, 1, 2]))
- def test_del_small_connection(self):
- mask = copy.deepcopy(self.b_label)
- mask = P.prepro_mask(mask)
- mask = P.del_small_connection(mask)
- self.check_output_equal(mask.shape, self.b_label.shape)
- self.assertEqual(mask.dtype, self.b_label.dtype)
- self.check_output_equal(np.unique(mask), np.unique(self.b_label))
- def test_fill_small_holes(self):
- mask = copy.deepcopy(self.b_label)
- mask = P.prepro_mask(mask)
- mask = P.fill_small_holes(mask)
- self.check_output_equal(mask.shape, self.b_label.shape)
- self.assertEqual(mask.dtype, self.b_label.dtype)
- self.check_output_equal(np.unique(mask), np.unique(self.b_label))
- def test_morphological_operation(self):
- mask = copy.deepcopy(self.b_label)
- mask = P.prepro_mask(mask)
- for op in ["open", "close", "erode", "dilate"]:
- mask = P.morphological_operation(mask, op)
- self.check_output_equal(mask.shape, self.b_label.shape)
- self.assertEqual(mask.dtype, self.b_label.dtype)
- self.check_output_equal(np.unique(mask), np.unique(self.b_label))
- def test_building_regularization(self):
- mask = copy.deepcopy(self.b_label)
- mask = P.prepro_mask(mask)
- mask = P.building_regularization(mask)
- self.check_output_equal(mask.shape, self.b_label.shape)
- self.assertEqual(mask.dtype, self.b_label.dtype)
- self.check_output_equal(np.unique(mask), np.unique(self.b_label))
- def test_cut_road_connection(self):
- mask = copy.deepcopy(self.b_label)
- mask = P.prepro_mask(mask)
- mask = P.cut_road_connection(mask)
- self.check_output_equal(mask.shape, self.b_label.shape)
- self.assertEqual(mask.dtype, self.b_label.dtype)
- self.check_output_equal(np.unique(mask), np.unique(self.b_label))
- def test_conditional_random_field(self):
- if "conditional_random_field" in dir(P):
- mask = copy.deepcopy(self.m_label)
- mask = P.prepro_mask(mask)
- mask = P.conditional_random_field(self.image2, mask)
- self.check_output_equal(mask.shape, self.m_label.shape)
- self.assertEqual(mask.dtype, self.m_label.dtype)
- self.check_output_equal(np.unique(mask), np.unique(self.m_label))
- def test_markov_random_field(self):
- mask = copy.deepcopy(self.m_label)
- mask = P.prepro_mask(mask)
- mask = P.markov_random_field(self.image2, mask)
- self.check_output_equal(mask.shape, self.m_label.shape)
- self.assertEqual(mask.dtype, self.m_label.dtype)
- self.check_output_equal(np.unique(mask), np.unique(self.m_label))
- def test_deal_one_class(self):
- mask = copy.deepcopy(self.m_label)
- mask = P.prepro_mask(mask)
- func = P.morphological_operation
- mask = P.deal_one_class(mask, 1, func, ops="dilate")
- self.check_output_equal(mask.shape, self.m_label.shape)
- self.assertEqual(mask.dtype, self.m_label.dtype)
- self.check_output_equal(np.unique(mask), np.unique(self.m_label))
- def test_change_(self):
- mask = copy.deepcopy(self.m_label)
- mask = P.prepro_mask(mask)
- mask = P.change_detection_filter(mask, self.image1, self.image2, 0.8,
- 0.8, "GLI", {"b": 3,
- "g": 2,
- "r": 1})
- self.check_output_equal(mask.shape, self.m_label.shape)
- self.assertEqual(mask.dtype, self.m_label.dtype)
- self.check_output_equal(np.unique(mask), np.unique(self.m_label))
|