12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import copy
- import random
- from numbers import Number
- from functools import partial
- from operator import methodcaller
- from collections import OrderedDict
- from collections.abc import Sequence
- import numpy as np
- import cv2
- import imghdr
- from PIL import Image
- from joblib import load
- import paddlers
- import paddlers.transforms.functions as F
- import paddlers.transforms.indices as indices
- import paddlers.transforms.satellites as satellites
- __all__ = [
- "construct_sample",
- "construct_sample_from_dict",
- "Compose",
- "DecodeImg",
- "Resize",
- "RandomResize",
- "ResizeByShort",
- "RandomResizeByShort",
- "ResizeByLong",
- "RandomHorizontalFlip",
- "RandomVerticalFlip",
- "Normalize",
- "CenterCrop",
- "RandomCrop",
- "RandomScaleAspect",
- "RandomExpand",
- "Pad",
- "MixupImage",
- "RandomDistort",
- "RandomBlur",
- "RandomSwap",
- "Dehaze",
- "ReduceDim",
- "SelectBand",
- "RandomFlipOrRotate",
- "ReloadMask",
- "AppendIndex",
- "MatchRadiance",
- "ArrangeRestorer",
- "ArrangeSegmenter",
- "ArrangeChangeDetector",
- "ArrangeClassifier",
- "ArrangeDetector",
- ]
- interp_dict = {
- 'NEAREST': cv2.INTER_NEAREST,
- 'LINEAR': cv2.INTER_LINEAR,
- 'CUBIC': cv2.INTER_CUBIC,
- 'AREA': cv2.INTER_AREA,
- 'LANCZOS4': cv2.INTER_LANCZOS4
- }
- def construct_sample(**kwargs):
- sample = OrderedDict()
- for k, v in kwargs.items():
- sample[k] = v
- if 'trans_info' not in sample:
- sample['trans_info'] = []
- return sample
- def construct_sample_from_dict(dict_like_obj):
- return construct_sample(**dict_like_obj)
- class Compose(object):
- """
- Apply a series of data augmentation strategies to the input.
- All input images should be in Height-Width-Channel ([H, W, C]) format.
- Args:
- transforms (list[paddlers.transforms.Transform]): List of data preprocess or
- augmentation operators.
- Raises:
- TypeError: Invalid type of transforms.
- ValueError: Invalid length of transforms.
- """
- def __init__(self, transforms):
- super(Compose, self).__init__()
- if not isinstance(transforms, list):
- raise TypeError(
- "Type of transforms is invalid. Must be a list, but received is {}."
- .format(type(transforms)))
- if len(transforms) < 1:
- raise ValueError(
- "Length of transforms must not be less than 1, but received is {}."
- .format(len(transforms)))
- transforms = copy.deepcopy(transforms)
- # We will have to do a late binding of `self.arrange`
- self.arrange = None
- self.transforms = transforms
- def __call__(self, sample):
- """
- This is equivalent to sequentially calling compose_obj.apply_transforms()
- and compose_obj.arrange_outputs().
- """
- if 'trans_info' not in sample:
- sample['trans_info'] = []
- sample = self.apply_transforms(sample)
- trans_info = sample['trans_info']
- sample = self.arrange_outputs(sample)
- return sample, trans_info
- def apply_transforms(self, sample):
- for op in self.transforms:
- # Skip batch transforms
- if getattr(op, 'is_batch_transform', False):
- continue
- sample = op(sample)
- return sample
- def arrange_outputs(self, sample):
- if self.arrange is not None:
- sample = self.arrange(sample)
- return sample
- class Transform(object):
- """
- Parent class of all data augmentation operators.
- """
- def __init__(self):
- pass
- def apply_im(self, image):
- return image
- def apply_mask(self, mask):
- return mask
- def apply_bbox(self, bbox):
- return bbox
- def apply_segm(self, segms):
- return segms
- def apply(self, sample):
- if 'image' in sample:
- sample['image'] = self.apply_im(sample['image'])
- else: # image_tx
- sample['image'] = self.apply_im(sample['image_t1'])
- sample['image2'] = self.apply_im(sample['image_t2'])
- if 'mask' in sample:
- sample['mask'] = self.apply_mask(sample['mask'])
- if 'gt_bbox' in sample:
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'])
- if 'aux_masks' in sample:
- sample['aux_masks'] = list(
- map(self.apply_mask, sample['aux_masks']))
- if 'target' in sample:
- sample['target'] = self.apply_im(sample['target'])
- return sample
- def __call__(self, sample):
- if isinstance(sample, Sequence):
- sample = [self.apply(s) for s in sample]
- else:
- sample = self.apply(sample)
- return sample
- def get_attrs_for_serialization(self):
- return self.__dict__
- class DecodeImg(Transform):
- """
- Decode image(s) in input.
- Args:
- to_rgb (bool, optional): If True, convert input image(s) from BGR format to
- RGB format. Defaults to True.
- to_uint8 (bool, optional): If True, quantize and convert decoded image(s) to
- uint8 type. Defaults to True.
- decode_bgr (bool, optional): If True, automatically interpret a non-geo image
- (e.g., jpeg images) as a BGR image. Defaults to True.
- decode_sar (bool, optional): If True, automatically interpret a single-channel
- geo image (e.g. geotiff images) as a SAR image, set this argument to
- True. Defaults to True.
- read_geo_info (bool, optional): If True, read geographical information from
- the image. Deafults to False.
- use_stretch (bool, optional): Whether to apply 2% linear stretch. Valid only if
- `to_uint8` is True. Defaults to False.
- """
- def __init__(self,
- to_rgb=True,
- to_uint8=True,
- decode_bgr=True,
- decode_sar=True,
- read_geo_info=False,
- use_stretch=False):
- super(DecodeImg, self).__init__()
- self.to_rgb = to_rgb
- self.to_uint8 = to_uint8
- self.decode_bgr = decode_bgr
- self.decode_sar = decode_sar
- self.read_geo_info = read_geo_info
- self.use_stretch = use_stretch
- def read_img(self, img_path):
- img_format = imghdr.what(img_path)
- name, ext = os.path.splitext(img_path)
- geo_trans, geo_proj = None, None
- if img_format == 'tiff' or ext == '.img':
- try:
- import gdal
- except:
- try:
- from osgeo import gdal
- except ImportError:
- raise ImportError(
- "Failed to import gdal! Please install GDAL library according to the document."
- )
- dataset = gdal.Open(img_path)
- if dataset == None:
- raise IOError('Cannot open', img_path)
- im_data = dataset.ReadAsArray()
- if im_data.ndim == 2 and self.decode_sar:
- im_data = F.to_intensity(im_data)
- im_data = im_data[:, :, np.newaxis]
- else:
- if im_data.ndim == 3:
- im_data = im_data.transpose((1, 2, 0))
- if self.read_geo_info:
- geo_trans = dataset.GetGeoTransform()
- geo_proj = dataset.GetProjection()
- elif img_format in ['jpeg', 'bmp', 'png', 'jpg']:
- if self.decode_bgr:
- im_data = cv2.imread(img_path, cv2.IMREAD_ANYDEPTH |
- cv2.IMREAD_ANYCOLOR | cv2.IMREAD_COLOR)
- else:
- im_data = cv2.imread(img_path, cv2.IMREAD_ANYDEPTH |
- cv2.IMREAD_ANYCOLOR)
- if self.to_rgb and im_data.shape[-1] == 3:
- im_data = cv2.cvtColor(im_data, cv2.COLOR_BGR2RGB)
- elif ext == '.npy':
- im_data = np.load(img_path)
- else:
- raise TypeError("Image format {} is not supported!".format(ext))
- if self.read_geo_info:
- return im_data, geo_trans, geo_proj
- else:
- return im_data
- def apply_im(self, im_path):
- if isinstance(im_path, str):
- try:
- data = self.read_img(im_path)
- except:
- raise ValueError("Cannot read the image file {}!".format(
- im_path))
- if self.read_geo_info:
- image, geo_trans, geo_proj = data
- geo_info_dict = {'geo_trans': geo_trans, 'geo_proj': geo_proj}
- else:
- image = data
- else:
- image = im_path
- if self.to_uint8:
- if self.use_stretch:
- image = F.to_uint8(image, norm=False, stretch=True)
- else:
- image = F.to_uint8(image, norm=True, stretch=False)
- if self.read_geo_info:
- return image, geo_info_dict
- else:
- return image
- def apply_mask(self, mask):
- try:
- mask = np.asarray(Image.open(mask))
- except:
- raise ValueError("Cannot read the mask file {}!".format(mask))
- if len(mask.shape) != 2:
- raise ValueError(
- "Mask should be a 1-channel image, but recevied is a {}-channel image.".
- format(mask.shape[2]))
- return mask
- def apply(self, sample):
- """
- Args:
- sample (dict): Input sample.
- Returns:
- dict: Sample with decoded images.
- """
- if 'image' in sample:
- if self.read_geo_info:
- image, geo_info_dict = self.apply_im(sample['image'])
- sample['image'] = image
- sample['geo_info_dict'] = geo_info_dict
- else:
- sample['image'] = self.apply_im(sample['image'])
- if 'image2' in sample:
- if self.read_geo_info:
- image2, geo_info_dict2 = self.apply_im(sample['image2'])
- sample['image2'] = image2
- sample['geo_info_dict2'] = geo_info_dict2
- else:
- sample['image2'] = self.apply_im(sample['image2'])
- if 'image_t1' in sample and not 'image' in sample:
- if not ('image_t2' in sample and 'image2' not in sample):
- raise ValueError
- if self.read_geo_info:
- image, geo_info_dict = self.apply_im(sample['image_t1'])
- sample['image'] = image
- sample['geo_info_dict'] = geo_info_dict
- else:
- sample['image'] = self.apply_im(sample['image_t1'])
- if self.read_geo_info:
- image2, geo_info_dict2 = self.apply_im(sample['image_t2'])
- sample['image2'] = image2
- sample['geo_info_dict2'] = geo_info_dict2
- else:
- sample['image2'] = self.apply_im(sample['image_t2'])
- if 'mask' in sample:
- sample['mask_ori'] = copy.deepcopy(sample['mask'])
- sample['mask'] = self.apply_mask(sample['mask'])
- im_height, im_width, _ = sample['image'].shape
- se_height, se_width = sample['mask'].shape
- if im_height != se_height or im_width != se_width:
- raise ValueError(
- "The height or width of the image is not same as the mask.")
- if 'aux_masks' in sample:
- sample['aux_masks_ori'] = copy.deepcopy(sample['aux_masks'])
- sample['aux_masks'] = list(
- map(self.apply_mask, sample['aux_masks']))
- # TODO: check the shape of auxiliary masks
- if 'target' in sample:
- if self.read_geo_info:
- target, geo_info_dict = self.apply_im(sample['target'])
- sample['target'] = target
- sample['geo_info_dict_tar'] = geo_info_dict
- else:
- sample['target'] = self.apply_im(sample['target'])
- sample['im_shape'] = np.array(
- sample['image'].shape[:2], dtype=np.float32)
- sample['scale_factor'] = np.array([1., 1.], dtype=np.float32)
- return sample
- class Resize(Transform):
- """
- Resize input.
- - If `target_size` is an int, resize the image(s) to (`target_size`, `target_size`).
- - If `target_size` is a list or tuple, resize the image(s) to `target_size`.
- Attention: If `interp` is 'RANDOM', the interpolation method will be chosen randomly.
- Args:
- target_size (int | list[int] | tuple[int]): Target size. If it is an integer, the
- target height and width will be both set to `target_size`. Otherwise,
- `target_size` represents [target height, target width].
- interp (str, optional): Interpolation method for resizing image(s). One of
- {'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}.
- Defaults to 'LINEAR'.
- keep_ratio (bool, optional): If True, the scaling factor of width and height will
- be set to same value, and height/width of the resized image will be not
- greater than the target width/height. Defaults to False.
- Raises:
- TypeError: Invalid type of target_size.
- ValueError: Invalid interpolation method.
- """
- def __init__(self, target_size, interp='LINEAR', keep_ratio=False):
- super(Resize, self).__init__()
- if not (interp == "RANDOM" or interp in interp_dict):
- raise ValueError("`interp` should be one of {}.".format(
- interp_dict.keys()))
- if isinstance(target_size, int):
- target_size = (target_size, target_size)
- else:
- if not (isinstance(target_size,
- (list, tuple)) and len(target_size) == 2):
- raise TypeError(
- "`target_size` should be an int or a list of length 2, but received {}.".
- format(target_size))
- # (height, width)
- self.target_size = target_size
- self.interp = interp
- self.keep_ratio = keep_ratio
- def apply_im(self, image, interp, target_size):
- flag = image.shape[2] == 1
- image = cv2.resize(image, target_size, interpolation=interp)
- if flag:
- image = image[:, :, np.newaxis]
- return image
- def apply_mask(self, mask, target_size):
- mask = cv2.resize(mask, target_size, interpolation=cv2.INTER_NEAREST)
- return mask
- def apply_bbox(self, bbox, scale, target_size):
- im_scale_x, im_scale_y = scale
- bbox[:, 0::2] *= im_scale_x
- bbox[:, 1::2] *= im_scale_y
- bbox[:, 0::2] = np.clip(bbox[:, 0::2], 0, target_size[0])
- bbox[:, 1::2] = np.clip(bbox[:, 1::2], 0, target_size[1])
- return bbox
- def apply_segm(self, segms, im_size, scale):
- im_h, im_w = im_size
- im_scale_x, im_scale_y = scale
- resized_segms = []
- for segm in segms:
- if F.is_poly(segm):
- # Polygon format
- resized_segms.append([
- F.resize_poly(poly, im_scale_x, im_scale_y) for poly in segm
- ])
- else:
- # RLE format
- resized_segms.append(
- F.resize_rle(segm, im_h, im_w, im_scale_x, im_scale_y))
- return resized_segms
- def apply(self, sample):
- sample['trans_info'].append(('resize', sample['image'].shape[0:2]))
- if self.interp == "RANDOM":
- interp = random.choice(list(interp_dict.values()))
- else:
- interp = interp_dict[self.interp]
- im_h, im_w = sample['image'].shape[:2]
- im_scale_y = self.target_size[0] / im_h
- im_scale_x = self.target_size[1] / im_w
- target_size = (self.target_size[1], self.target_size[0])
- if self.keep_ratio:
- scale = min(im_scale_y, im_scale_x)
- target_w = int(round(im_w * scale))
- target_h = int(round(im_h * scale))
- target_size = (target_w, target_h)
- im_scale_y = target_h / im_h
- im_scale_x = target_w / im_w
- sample['image'] = self.apply_im(sample['image'], interp, target_size)
- if 'image2' in sample:
- sample['image2'] = self.apply_im(sample['image2'], interp,
- target_size)
- if 'mask' in sample:
- sample['mask'] = self.apply_mask(sample['mask'], target_size)
- if 'aux_masks' in sample:
- sample['aux_masks'] = list(
- map(partial(
- self.apply_mask, target_size=target_size),
- sample['aux_masks']))
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
- sample['gt_bbox'] = self.apply_bbox(
- sample['gt_bbox'], [im_scale_x, im_scale_y], target_size)
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
- sample['gt_poly'] = self.apply_segm(
- sample['gt_poly'], [im_h, im_w], [im_scale_x, im_scale_y])
- if 'target' in sample:
- if 'sr_factor' in sample:
- # For SR tasks
- sample['target'] = self.apply_im(
- sample['target'], interp,
- F.calc_hr_shape(target_size, sample['sr_factor']))
- else:
- # For non-SR tasks
- sample['target'] = self.apply_im(sample['target'], interp,
- target_size)
- sample['im_shape'] = np.asarray(
- sample['image'].shape[:2], dtype=np.float32)
- if 'scale_factor' in sample:
- scale_factor = sample['scale_factor']
- sample['scale_factor'] = np.asarray(
- [scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x],
- dtype=np.float32)
- return sample
- class RandomResize(Transform):
- """
- Resize input to random sizes.
- Attention: If `interp` is 'RANDOM', the interpolation method will be chosen randomly.
- Args:
- target_sizes (list[int] | list[list|tuple] | tuple[list|tuple]):
- Multiple target sizes, each of which should be int, list, or tuple.
- interp (str, optional): Interpolation method for resizing image(s). One of
- {'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}.
- Defaults to 'LINEAR'.
- Raises:
- TypeError: Invalid type of `target_size`.
- ValueError: Invalid interpolation method.
- """
- def __init__(self, target_sizes, interp='LINEAR'):
- super(RandomResize, self).__init__()
- if not (interp == "RANDOM" or interp in interp_dict):
- raise ValueError("`interp` should be one of {}.".format(
- interp_dict.keys()))
- self.interp = interp
- assert isinstance(target_sizes, list), \
- "`target_size` must be a list."
- for i, item in enumerate(target_sizes):
- if isinstance(item, int):
- target_sizes[i] = (item, item)
- self.target_size = target_sizes
- def apply(self, sample):
- height, width = random.choice(self.target_size)
- resizer = Resize((height, width), interp=self.interp)
- sample = resizer(sample)
- return sample
- class ResizeByShort(Transform):
- """
- Resize input while keeping the aspect ratio.
- Attention: If `interp` is 'RANDOM', the interpolation method will be chosen randomly.
- Args:
- short_size (int): Target size of the shorter side of the image(s).
- max_size (int, optional): Upper bound of longer side of the image(s). If
- `max_size` is -1, no upper bound will be applied. Defaults to -1.
- interp (str, optional): Interpolation method for resizing image(s). One of
- {'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}.
- Defaults to 'LINEAR'.
- Raises:
- ValueError: Invalid interpolation method.
- """
- def __init__(self, short_size=256, max_size=-1, interp='LINEAR'):
- if not (interp == "RANDOM" or interp in interp_dict):
- raise ValueError("`interp` should be one of {}".format(
- interp_dict.keys()))
- super(ResizeByShort, self).__init__()
- self.short_size = short_size
- self.max_size = max_size
- self.interp = interp
- def apply(self, sample):
- im_h, im_w = sample['image'].shape[:2]
- im_short_size = min(im_h, im_w)
- im_long_size = max(im_h, im_w)
- scale = float(self.short_size) / float(im_short_size)
- if 0 < self.max_size < np.round(scale * im_long_size):
- scale = float(self.max_size) / float(im_long_size)
- target_w = int(round(im_w * scale))
- target_h = int(round(im_h * scale))
- sample = Resize(
- target_size=(target_h, target_w), interp=self.interp)(sample)
- return sample
- class RandomResizeByShort(Transform):
- """
- Resize input to random sizes while keeping the aspect ratio.
- Attention: If `interp` is 'RANDOM', the interpolation method will be chosen randomly.
- Args:
- short_sizes (list[int]): Target size of the shorter side of the image(s).
- max_size (int, optional): Upper bound of longer side of the image(s).
- If `max_size` is -1, no upper bound will be applied. Defaults to -1.
- interp (str, optional): Interpolation method for resizing image(s). One of
- {'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}.
- Defaults to 'LINEAR'.
- Raises:
- TypeError: Invalid type of `target_size`.
- ValueError: Invalid interpolation method.
- See Also:
- ResizeByShort: Resize image(s) in input while keeping the aspect ratio.
- """
- def __init__(self, short_sizes, max_size=-1, interp='LINEAR'):
- super(RandomResizeByShort, self).__init__()
- if not (interp == "RANDOM" or interp in interp_dict):
- raise ValueError("`interp` should be one of {}".format(
- interp_dict.keys()))
- self.interp = interp
- assert isinstance(short_sizes, list), \
- "`short_sizes` must be a list."
- self.short_sizes = short_sizes
- self.max_size = max_size
- def apply(self, sample):
- short_size = random.choice(self.short_sizes)
- resizer = ResizeByShort(
- short_size=short_size, max_size=self.max_size, interp=self.interp)
- sample = resizer(sample)
- return sample
- class ResizeByLong(Transform):
- def __init__(self, long_size=256, interp='LINEAR'):
- super(ResizeByLong, self).__init__()
- self.long_size = long_size
- self.interp = interp
- def apply(self, sample):
- im_h, im_w = sample['image'].shape[:2]
- im_long_size = max(im_h, im_w)
- scale = float(self.long_size) / float(im_long_size)
- target_h = int(round(im_h * scale))
- target_w = int(round(im_w * scale))
- sample = Resize(
- target_size=(target_h, target_w), interp=self.interp)(sample)
- return sample
- class RandomFlipOrRotate(Transform):
- """
- Flip or Rotate an image in different directions with a certain probability.
- Args:
- probs (list[float]): Probabilities of performing flipping and rotation.
- Default: [0.35,0.25].
- probsf (list[float]): Probabilities of 5 flipping modes (horizontal,
- vertical, both horizontal and vertical, diagonal, anti-diagonal).
- Default: [0.3, 0.3, 0.2, 0.1, 0.1].
- probsr (list[float]): Probabilities of 3 rotation modes (90°, 180°, 270°
- clockwise). Default: [0.25, 0.5, 0.25].
- Examples:
- from paddlers import transforms as T
- # Define operators for data augmentation
- train_transforms = T.Compose([
- T.DecodeImg(),
- T.RandomFlipOrRotate(
- probs = [0.3, 0.2] # p=0.3 to flip the image, p=0.2 to rotate the image, p=0.5 to keep the image unchanged.
- probsf = [0.3, 0.25, 0, 0, 0] # p=0.3 and p=0.25 to perform horizontal and vertical flipping; probility of no-flipping is 0.45.
- probsr = [0, 0.65, 0]), # p=0.65 to rotate the image by 180°; probility of no-rotation is 0.35.
- T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
- ])
- """
- def __init__(self,
- probs=[0.35, 0.25],
- probsf=[0.3, 0.3, 0.2, 0.1, 0.1],
- probsr=[0.25, 0.5, 0.25]):
- super(RandomFlipOrRotate, self).__init__()
- # Change various probabilities into probability intervals, to judge in which mode to flip or rotate
- self.probs = [probs[0], probs[0] + probs[1]]
- self.probsf = self.get_probs_range(probsf)
- self.probsr = self.get_probs_range(probsr)
- def apply_im(self, image, mode_id, flip_mode=True):
- if flip_mode:
- image = F.img_flip(image, mode_id)
- else:
- image = F.img_simple_rotate(image, mode_id)
- return image
- def apply_mask(self, mask, mode_id, flip_mode=True):
- if flip_mode:
- mask = F.img_flip(mask, mode_id)
- else:
- mask = F.img_simple_rotate(mask, mode_id)
- return mask
- def apply_bbox(self, bbox, mode_id, flip_mode=True):
- raise TypeError(
- "Currently, RandomFlipOrRotate is not available for object detection tasks."
- )
- def apply_segm(self, bbox, mode_id, flip_mode=True):
- raise TypeError(
- "Currently, RandomFlipOrRotate is not available for object detection tasks."
- )
- def get_probs_range(self, probs):
- """
- Change list of probabilities into cumulative probability intervals.
- Args:
- probs (list[float]): Probabilities of different modes, shape: [n].
- Returns:
- list[list]: Probability intervals, shape: [n, 2].
- """
- ps = []
- last_prob = 0
- for prob in probs:
- p_s = last_prob
- cur_prob = prob / sum(probs)
- last_prob += cur_prob
- p_e = last_prob
- ps.append([p_s, p_e])
- return ps
- def judge_probs_range(self, p, probs):
- """
- Judge whether the value of `p` falls within the given probability interval.
- Args:
- p (float): Value between 0 and 1.
- probs (list[list]): Probability intervals, shape: [n, 2].
- Returns:
- int: Interval where the input probability falls into.
- """
- for id, id_range in enumerate(probs):
- if p > id_range[0] and p < id_range[1]:
- return id
- return -1
- def apply(self, sample):
- p_m = random.random()
- if p_m < self.probs[0]:
- mode_p = random.random()
- mode_id = self.judge_probs_range(mode_p, self.probsf)
- sample['image'] = self.apply_im(sample['image'], mode_id, True)
- if 'image2' in sample:
- sample['image2'] = self.apply_im(sample['image2'], mode_id,
- True)
- if 'mask' in sample:
- sample['mask'] = self.apply_mask(sample['mask'], mode_id, True)
- if 'aux_masks' in sample:
- sample['aux_masks'] = [
- self.apply_mask(aux_mask, mode_id, True)
- for aux_mask in sample['aux_masks']
- ]
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], mode_id,
- True)
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
- sample['gt_poly'] = self.apply_segm(sample['gt_poly'], mode_id,
- True)
- if 'target' in sample:
- sample['target'] = self.apply_im(sample['target'], mode_id,
- True)
- elif p_m < self.probs[1]:
- mode_p = random.random()
- mode_id = self.judge_probs_range(mode_p, self.probsr)
- sample['image'] = self.apply_im(sample['image'], mode_id, False)
- if 'image2' in sample:
- sample['image2'] = self.apply_im(sample['image2'], mode_id,
- False)
- if 'mask' in sample:
- sample['mask'] = self.apply_mask(sample['mask'], mode_id, False)
- if 'aux_masks' in sample:
- sample['aux_masks'] = [
- self.apply_mask(aux_mask, mode_id, False)
- for aux_mask in sample['aux_masks']
- ]
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], mode_id,
- False)
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
- sample['gt_poly'] = self.apply_segm(sample['gt_poly'], mode_id,
- False)
- if 'target' in sample:
- sample['target'] = self.apply_im(sample['target'], mode_id,
- False)
- return sample
- class RandomHorizontalFlip(Transform):
- """
- Randomly flip the input horizontally.
- Args:
- prob (float, optional): Probability of flipping the input. Defaults to .5.
- """
- def __init__(self, prob=0.5):
- super(RandomHorizontalFlip, self).__init__()
- self.prob = prob
- def apply_im(self, image):
- image = F.horizontal_flip(image)
- return image
- def apply_mask(self, mask):
- mask = F.horizontal_flip(mask)
- return mask
- def apply_bbox(self, bbox, width):
- oldx1 = bbox[:, 0].copy()
- oldx2 = bbox[:, 2].copy()
- bbox[:, 0] = width - oldx2
- bbox[:, 2] = width - oldx1
- return bbox
- def apply_segm(self, segms, height, width):
- flipped_segms = []
- for segm in segms:
- if F.is_poly(segm):
- # Polygon format
- flipped_segms.append(
- [F.horizontal_flip_poly(poly, width) for poly in segm])
- else:
- # RLE format
- flipped_segms.append(F.horizontal_flip_rle(segm, height, width))
- return flipped_segms
- def apply(self, sample):
- if random.random() < self.prob:
- im_h, im_w = sample['image'].shape[:2]
- sample['image'] = self.apply_im(sample['image'])
- if 'image2' in sample:
- sample['image2'] = self.apply_im(sample['image2'])
- if 'mask' in sample:
- sample['mask'] = self.apply_mask(sample['mask'])
- if 'aux_masks' in sample:
- sample['aux_masks'] = list(
- map(self.apply_mask, sample['aux_masks']))
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], im_w)
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
- sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_h,
- im_w)
- if 'target' in sample:
- sample['target'] = self.apply_im(sample['target'])
- return sample
- class RandomVerticalFlip(Transform):
- """
- Randomly flip the input vertically.
- Args:
- prob (float, optional): Probability of flipping the input. Defaults to .5.
- """
- def __init__(self, prob=0.5):
- super(RandomVerticalFlip, self).__init__()
- self.prob = prob
- def apply_im(self, image):
- image = F.vertical_flip(image)
- return image
- def apply_mask(self, mask):
- mask = F.vertical_flip(mask)
- return mask
- def apply_bbox(self, bbox, height):
- oldy1 = bbox[:, 1].copy()
- oldy2 = bbox[:, 3].copy()
- bbox[:, 0] = height - oldy2
- bbox[:, 2] = height - oldy1
- return bbox
- def apply_segm(self, segms, height, width):
- flipped_segms = []
- for segm in segms:
- if F.is_poly(segm):
- # Polygon format
- flipped_segms.append(
- [F.vertical_flip_poly(poly, height) for poly in segm])
- else:
- # RLE format
- flipped_segms.append(F.vertical_flip_rle(segm, height, width))
- return flipped_segms
- def apply(self, sample):
- if random.random() < self.prob:
- im_h, im_w = sample['image'].shape[:2]
- sample['image'] = self.apply_im(sample['image'])
- if 'image2' in sample:
- sample['image2'] = self.apply_im(sample['image2'])
- if 'mask' in sample:
- sample['mask'] = self.apply_mask(sample['mask'])
- if 'aux_masks' in sample:
- sample['aux_masks'] = list(
- map(self.apply_mask, sample['aux_masks']))
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], im_h)
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
- sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_h,
- im_w)
- if 'target' in sample:
- sample['target'] = self.apply_im(sample['target'])
- return sample
- class Normalize(Transform):
- """
- Apply normalization to the input image(s). The normalization steps are:
- 1. im = (im - min_value) * 1 / (max_value - min_value)
- 2. im = im - mean
- 3. im = im / std
- Args:
- mean (list[float] | tuple[float], optional): Mean of input image(s).
- Defaults to [0.485, 0.456, 0.406].
- std (list[float] | tuple[float], optional): Standard deviation of input
- image(s). Defaults to [0.229, 0.224, 0.225].
- min_val (list[float] | tuple[float], optional): Minimum value of input
- image(s). If None, use 0 for all channels. Defaults to None.
- max_val (list[float] | tuple[float], optional): Maximum value of input
- image(s). If None, use 255. for all channels. Defaults to None.
- apply_to_tar (bool, optional): Whether to apply transformation to the target
- image. Defaults to True.
- """
- def __init__(self,
- mean=[0.485, 0.456, 0.406],
- std=[0.229, 0.224, 0.225],
- min_val=None,
- max_val=None,
- apply_to_tar=True):
- super(Normalize, self).__init__()
- channel = len(mean)
- if min_val is None:
- min_val = [0] * channel
- if max_val is None:
- max_val = [255.] * channel
- from functools import reduce
- if reduce(lambda x, y: x * y, std) == 0:
- raise ValueError(
- "`std` should not contain 0, but received is {}.".format(std))
- if reduce(lambda x, y: x * y,
- [a - b for a, b in zip(max_val, min_val)]) == 0:
- raise ValueError(
- "(`max_val` - `min_val`) should not contain 0, but received is {}.".
- format((np.asarray(max_val) - np.asarray(min_val)).tolist()))
- self.mean = mean
- self.std = std
- self.min_val = min_val
- self.max_val = max_val
- self.apply_to_tar = apply_to_tar
- def apply_im(self, image):
- image = image.astype(np.float32)
- mean = np.asarray(
- self.mean, dtype=np.float32)[np.newaxis, np.newaxis, :]
- std = np.asarray(self.std, dtype=np.float32)[np.newaxis, np.newaxis, :]
- image = F.normalize(image, mean, std, self.min_val, self.max_val)
- return image
- def apply(self, sample):
- sample['image'] = self.apply_im(sample['image'])
- if 'image2' in sample:
- sample['image2'] = self.apply_im(sample['image2'])
- if 'target' in sample and self.apply_to_tar:
- sample['target'] = self.apply_im(sample['target'])
- return sample
- class CenterCrop(Transform):
- """
- Crop the input image(s) at the center.
- 1. Locate the center of the image.
- 2. Crop the image.
- Args:
- crop_size (int, optional): Target size of the cropped image(s).
- Defaults to 224.
- """
- def __init__(self, crop_size=224):
- super(CenterCrop, self).__init__()
- self.crop_size = crop_size
- def apply_im(self, image):
- image = F.center_crop(image, self.crop_size)
- return image
- def apply_mask(self, mask):
- mask = F.center_crop(mask, self.crop_size)
- return mask
- def apply(self, sample):
- sample['image'] = self.apply_im(sample['image'])
- if 'image2' in sample:
- sample['image2'] = self.apply_im(sample['image2'])
- if 'mask' in sample:
- sample['mask'] = self.apply_mask(sample['mask'])
- if 'aux_masks' in sample:
- sample['aux_masks'] = list(
- map(self.apply_mask, sample['aux_masks']))
- if 'target' in sample:
- sample['target'] = self.apply_im(sample['target'])
- return sample
- class RandomCrop(Transform):
- """
- Randomly crop the input.
- 1. Compute the height and width of cropped area according to `aspect_ratio` and
- `scaling`.
- 2. Locate the upper left corner of cropped area randomly.
- 3. Crop the image(s).
- 4. Resize the cropped area to `crop_size` x `crop_size`.
- Args:
- crop_size (int | list[int] | tuple[int]): Target size of the cropped area. If
- None, the cropped area will not be resized. Defaults to None.
- aspect_ratio (list[float], optional): Aspect ratio of cropped region in
- [min, max] format. Defaults to [.5, 2.].
- thresholds (list[float], optional): Iou thresholds to decide a valid bbox
- crop. Defaults to [.0, .1, .3, .5, .7, .9].
- scaling (list[float], optional): Ratio between the cropped region and the
- original image in [min, max] format. Defaults to [.3, 1.].
- num_attempts (int, optional): Max number of tries before giving up.
- Defaults to 50.
- allow_no_crop (bool, optional): Whether returning without doing crop is
- allowed. Defaults to True.
- cover_all_box (bool, optional): Whether to ensure all bboxes be covered in
- the final crop. Defaults to False.
- """
- def __init__(self,
- crop_size=None,
- aspect_ratio=[.5, 2.],
- thresholds=[.0, .1, .3, .5, .7, .9],
- scaling=[.3, 1.],
- num_attempts=50,
- allow_no_crop=True,
- cover_all_box=False):
- super(RandomCrop, self).__init__()
- self.crop_size = crop_size
- self.aspect_ratio = aspect_ratio
- self.thresholds = thresholds
- self.scaling = scaling
- self.num_attempts = num_attempts
- self.allow_no_crop = allow_no_crop
- self.cover_all_box = cover_all_box
- def _generate_crop_info(self, sample):
- im_h, im_w = sample['image'].shape[:2]
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
- thresholds = self.thresholds
- if self.allow_no_crop:
- thresholds.append('no_crop')
- np.random.shuffle(thresholds)
- for thresh in thresholds:
- if thresh == 'no_crop':
- return None
- for i in range(self.num_attempts):
- crop_box = self._get_crop_box(im_h, im_w)
- if crop_box is None:
- continue
- iou = self._iou_matrix(
- sample['gt_bbox'],
- np.array(
- [crop_box], dtype=np.float32))
- if iou.max() < thresh:
- continue
- if self.cover_all_box and iou.min() < thresh:
- continue
- cropped_box, valid_ids = self._crop_box_with_center_constraint(
- sample['gt_bbox'], np.array(
- crop_box, dtype=np.float32))
- if valid_ids.size > 0:
- return crop_box, cropped_box, valid_ids
- else:
- for i in range(self.num_attempts):
- crop_box = self._get_crop_box(im_h, im_w)
- if crop_box is None:
- continue
- return crop_box, None, None
- return None
- def _get_crop_box(self, im_h, im_w):
- scale = np.random.uniform(*self.scaling)
- if self.aspect_ratio is not None:
- min_ar, max_ar = self.aspect_ratio
- aspect_ratio = np.random.uniform(
- max(min_ar, scale**2), min(max_ar, scale**-2))
- h_scale = scale / np.sqrt(aspect_ratio)
- w_scale = scale * np.sqrt(aspect_ratio)
- else:
- h_scale = np.random.uniform(*self.scaling)
- w_scale = np.random.uniform(*self.scaling)
- crop_h = im_h * h_scale
- crop_w = im_w * w_scale
- if self.aspect_ratio is None:
- if crop_h / crop_w < 0.5 or crop_h / crop_w > 2.0:
- return None
- crop_h = int(crop_h)
- crop_w = int(crop_w)
- crop_y = np.random.randint(0, im_h - crop_h)
- crop_x = np.random.randint(0, im_w - crop_w)
- return [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
- def _iou_matrix(self, a, b):
- tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2])
- br_i = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
- area_i = np.prod(br_i - tl_i, axis=2) * (tl_i < br_i).all(axis=2)
- area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
- area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
- area_o = (area_a[:, np.newaxis] + area_b - area_i)
- return area_i / (area_o + 1e-10)
- def _crop_box_with_center_constraint(self, box, crop):
- cropped_box = box.copy()
- cropped_box[:, :2] = np.maximum(box[:, :2], crop[:2])
- cropped_box[:, 2:] = np.minimum(box[:, 2:], crop[2:])
- cropped_box[:, :2] -= crop[:2]
- cropped_box[:, 2:] -= crop[:2]
- centers = (box[:, :2] + box[:, 2:]) / 2
- valid = np.logical_and(crop[:2] <= centers,
- centers < crop[2:]).all(axis=1)
- valid = np.logical_and(
- valid, (cropped_box[:, :2] < cropped_box[:, 2:]).all(axis=1))
- return cropped_box, np.where(valid)[0]
- def _crop_segm(self, segms, valid_ids, crop, height, width):
- crop_segms = []
- for id in valid_ids:
- segm = segms[id]
- if F.is_poly(segm):
- # Polygon format
- crop_segms.append(F.crop_poly(segm, crop))
- else:
- # RLE format
- crop_segms.append(F.crop_rle(segm, crop, height, width))
- return crop_segms
- def apply_im(self, image, crop):
- x1, y1, x2, y2 = crop
- return image[y1:y2, x1:x2, :]
- def apply_mask(self, mask, crop):
- x1, y1, x2, y2 = crop
- return mask[y1:y2, x1:x2, ...]
- def apply(self, sample):
- crop_info = self._generate_crop_info(sample)
- if crop_info is not None:
- crop_box, cropped_box, valid_ids = crop_info
- im_h, im_w = sample['image'].shape[:2]
- sample['image'] = self.apply_im(sample['image'], crop_box)
- if 'image2' in sample:
- sample['image2'] = self.apply_im(sample['image2'], crop_box)
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
- crop_polys = self._crop_segm(
- sample['gt_poly'],
- valid_ids,
- np.array(
- crop_box, dtype=np.int64),
- im_h,
- im_w)
- if [] in crop_polys:
- delete_id = list()
- valid_polys = list()
- for idx, poly in enumerate(crop_polys):
- if not poly:
- delete_id.append(idx)
- else:
- valid_polys.append(poly)
- valid_ids = np.delete(valid_ids, delete_id)
- if not valid_polys:
- return sample
- sample['gt_poly'] = valid_polys
- else:
- sample['gt_poly'] = crop_polys
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
- sample['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
- sample['gt_class'] = np.take(
- sample['gt_class'], valid_ids, axis=0)
- if 'gt_score' in sample:
- sample['gt_score'] = np.take(
- sample['gt_score'], valid_ids, axis=0)
- if 'is_crowd' in sample:
- sample['is_crowd'] = np.take(
- sample['is_crowd'], valid_ids, axis=0)
- if 'mask' in sample:
- sample['mask'] = self.apply_mask(sample['mask'], crop_box)
- if 'aux_masks' in sample:
- sample['aux_masks'] = list(
- map(partial(
- self.apply_mask, crop=crop_box),
- sample['aux_masks']))
- if 'target' in sample:
- if 'sr_factor' in sample:
- sample['target'] = self.apply_im(
- sample['target'],
- F.calc_hr_shape(crop_box, sample['sr_factor']))
- else:
- sample['target'] = self.apply_im(sample['image'], crop_box)
- if self.crop_size is not None:
- sample = Resize(self.crop_size)(sample)
- return sample
- class RandomScaleAspect(Transform):
- """
- Crop input image(s) and resize back to original sizes.
- Args:
- min_scale (float): Minimum ratio between the cropped region and the original
- image. If 0, image(s) will not be cropped. Defaults to .5.
- aspect_ratio (float): Aspect ratio of cropped region. Defaults to .33.
- """
- def __init__(self, min_scale=0.5, aspect_ratio=0.33):
- super(RandomScaleAspect, self).__init__()
- self.min_scale = min_scale
- self.aspect_ratio = aspect_ratio
- def apply(self, sample):
- if self.min_scale != 0 and self.aspect_ratio != 0:
- img_height, img_width = sample['image'].shape[:2]
- sample = RandomCrop(
- crop_size=(img_height, img_width),
- aspect_ratio=[self.aspect_ratio, 1. / self.aspect_ratio],
- scaling=[self.min_scale, 1.],
- num_attempts=10,
- allow_no_crop=False)(sample)
- return sample
- class RandomExpand(Transform):
- """
- Randomly expand the input by padding according to random offsets.
- Args:
- upper_ratio (float, optional): Maximum ratio to which the original image
- is expanded. Defaults to 4..
- prob (float, optional): Probability of expanding. Defaults to .5.
- im_padding_value (list[float] | tuple[float], optional): RGB filling value
- for the image. Defaults to (127.5, 127.5, 127.5).
- label_padding_value (int, optional): Filling value for the mask.
- Defaults to 255.
- See Also:
- paddlers.transforms.Pad
- """
- def __init__(self,
- upper_ratio=4.,
- prob=.5,
- im_padding_value=127.5,
- label_padding_value=255):
- super(RandomExpand, self).__init__()
- assert upper_ratio > 1.01, "`upper_ratio` must be larger than 1.01."
- self.upper_ratio = upper_ratio
- self.prob = prob
- assert isinstance(im_padding_value, (Number, Sequence)), \
- "Value to fill must be either float or sequence."
- self.im_padding_value = im_padding_value
- self.label_padding_value = label_padding_value
- def apply(self, sample):
- if random.random() < self.prob:
- im_h, im_w = sample['image'].shape[:2]
- ratio = np.random.uniform(1., self.upper_ratio)
- h = int(im_h * ratio)
- w = int(im_w * ratio)
- if h > im_h and w > im_w:
- y = np.random.randint(0, h - im_h)
- x = np.random.randint(0, w - im_w)
- target_size = (h, w)
- offsets = (x, y)
- sample = Pad(
- target_size=target_size,
- pad_mode=-1,
- offsets=offsets,
- im_padding_value=self.im_padding_value,
- label_padding_value=self.label_padding_value)(sample)
- return sample
- class Pad(Transform):
- def __init__(self,
- target_size=None,
- pad_mode=0,
- offsets=None,
- im_padding_value=127.5,
- label_padding_value=255,
- size_divisor=32):
- """
- Pad image to a specified size or multiple of `size_divisor`.
- Args:
- target_size (list[int] | tuple[int], optional): Image target size, if None, pad to
- multiple of size_divisor. Defaults to None.
- pad_mode (int, optional): Pad mode. Currently only four modes are supported:
- [-1, 0, 1, 2]. if -1, use specified offsets. If 0, only pad to right and bottom.
- If 1, pad according to center. If 2, only pad left and top. Defaults to 0.
- offsets (list[int]|None, optional): Padding offsets. Defaults to None.
- im_padding_value (list[float] | tuple[float]): RGB value of padded area.
- Defaults to (127.5, 127.5, 127.5).
- label_padding_value (int, optional): Filling value for the mask.
- Defaults to 255.
- size_divisor (int): Image width and height after padding will be a multiple of
- `size_divisor`.
- """
- super(Pad, self).__init__()
- if isinstance(target_size, (list, tuple)):
- if len(target_size) != 2:
- raise ValueError(
- "`target_size` should contain 2 elements, but it is {}.".
- format(target_size))
- if isinstance(target_size, int):
- target_size = [target_size] * 2
- assert pad_mode in [
- -1, 0, 1, 2
- ], "Currently only four modes are supported: [-1, 0, 1, 2]."
- if pad_mode == -1:
- assert offsets, "if `pad_mode` is -1, `offsets` should not be None."
- self.target_size = target_size
- self.size_divisor = size_divisor
- self.pad_mode = pad_mode
- self.offsets = offsets
- self.im_padding_value = im_padding_value
- self.label_padding_value = label_padding_value
- def apply_im(self, image, offsets, target_size):
- x, y = offsets
- h, w = target_size
- im_h, im_w, channel = image.shape[:3]
- canvas = np.ones((h, w, channel), dtype=np.float32)
- canvas *= np.array(self.im_padding_value, dtype=np.float32)
- canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32)
- return canvas
- def apply_mask(self, mask, offsets, target_size):
- x, y = offsets
- im_h, im_w = mask.shape[:2]
- h, w = target_size
- canvas = np.ones((h, w), dtype=np.float32)
- canvas *= np.array(self.label_padding_value, dtype=np.float32)
- canvas[y:y + im_h, x:x + im_w] = mask.astype(np.float32)
- return canvas
- def apply_bbox(self, bbox, offsets):
- return bbox + np.array(offsets * 2, dtype=np.float32)
- def apply_segm(self, segms, offsets, im_size, size):
- x, y = offsets
- height, width = im_size
- h, w = size
- expanded_segms = []
- for segm in segms:
- if F.is_poly(segm):
- # Polygon format
- expanded_segms.append(
- [F.expand_poly(poly, x, y) for poly in segm])
- else:
- # RLE format
- expanded_segms.append(
- F.expand_rle(segm, x, y, height, width, h, w))
- return expanded_segms
- def _get_offsets(self, im_h, im_w, h, w):
- if self.pad_mode == -1:
- offsets = self.offsets
- elif self.pad_mode == 0:
- offsets = [0, 0]
- elif self.pad_mode == 1:
- offsets = [(w - im_w) // 2, (h - im_h) // 2]
- else:
- offsets = [w - im_w, h - im_h]
- return offsets
- def apply(self, sample):
- im_h, im_w = sample['image'].shape[:2]
- if self.target_size:
- h, w = self.target_size
- assert (
- im_h <= h and im_w <= w
- ), 'target size ({}, {}) cannot be less than image size ({}, {})' \
- .format(h, w, im_h, im_w)
- else:
- h = (np.ceil(im_h / self.size_divisor) *
- self.size_divisor).astype(int)
- w = (np.ceil(im_w / self.size_divisor) *
- self.size_divisor).astype(int)
- if h == im_h and w == im_w:
- return sample
- offsets = self._get_offsets(im_h, im_w, h, w)
- sample['trans_info'].append(
- ('padding', sample['image'].shape[0:2], offsets))
- sample['image'] = self.apply_im(sample['image'], offsets, (h, w))
- if 'image2' in sample:
- sample['image2'] = self.apply_im(sample['image2'], offsets, (h, w))
- if 'mask' in sample:
- sample['mask'] = self.apply_mask(sample['mask'], offsets, (h, w))
- if 'aux_masks' in sample:
- sample['aux_masks'] = list(
- map(partial(
- self.apply_mask, offsets=offsets, target_size=(h, w)),
- sample['aux_masks']))
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], offsets)
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
- sample['gt_poly'] = self.apply_segm(
- sample['gt_poly'], offsets, im_size=[im_h, im_w], size=[h, w])
- if 'target' in sample:
- if 'sr_factor' in sample:
- hr_shape = F.calc_hr_shape((h, w), sample['sr_factor'])
- hr_offsets = self._get_offsets(*sample['target'].shape[:2],
- *hr_shape)
- sample['target'] = self.apply_im(sample['target'], hr_offsets,
- hr_shape)
- else:
- sample['target'] = self.apply_im(sample['target'], offsets,
- (h, w))
- return sample
- class MixupImage(Transform):
- is_batch_transform = True
- def __init__(self, alpha=1.5, beta=1.5, mixup_epoch=-1):
- """
- Mixup two images and their gt_bbbox/gt_score.
- Args:
- alpha (float, optional): Alpha parameter of beta distribution.
- Defaults to 1.5.
- beta (float, optional): Beta parameter of beta distribution.
- Defaults to 1.5.
- """
- super(MixupImage, self).__init__()
- if alpha <= 0.0:
- raise ValueError("`alpha` should be positive in MixupImage.")
- if beta <= 0.0:
- raise ValueError("`beta` should be positive in MixupImage.")
- self.alpha = alpha
- self.beta = beta
- self.mixup_epoch = mixup_epoch
- def apply_im(self, image1, image2, factor):
- h = max(image1.shape[0], image2.shape[0])
- w = max(image1.shape[1], image2.shape[1])
- img = np.zeros((h, w, image1.shape[2]), 'float32')
- img[:image1.shape[0], :image1.shape[1], :] = \
- image1.astype('float32') * factor
- img[:image2.shape[0], :image2.shape[1], :] += \
- image2.astype('float32') * (1.0 - factor)
- return img.astype('uint8')
- def __call__(self, sample):
- if not isinstance(sample, Sequence):
- return sample
- assert len(sample) == 2, 'mixup need two samples'
- factor = np.random.beta(self.alpha, self.beta)
- factor = max(0.0, min(1.0, factor))
- if factor >= 1.0:
- return sample[0]
- if factor <= 0.0:
- return sample[1]
- image = self.apply_im(sample[0]['image'], sample[1]['image'], factor)
- result = copy.deepcopy(sample[0])
- result['image'] = image
- # Apply bbox and score
- if 'gt_bbox' in sample[0]:
- gt_bbox1 = sample[0]['gt_bbox']
- gt_bbox2 = sample[1]['gt_bbox']
- gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
- result['gt_bbox'] = gt_bbox
- if 'gt_poly' in sample[0]:
- gt_poly1 = sample[0]['gt_poly']
- gt_poly2 = sample[1]['gt_poly']
- gt_poly = gt_poly1 + gt_poly2
- result['gt_poly'] = gt_poly
- if 'gt_class' in sample[0]:
- gt_class1 = sample[0]['gt_class']
- gt_class2 = sample[1]['gt_class']
- gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
- result['gt_class'] = gt_class
- gt_score1 = np.ones_like(sample[0]['gt_class'])
- gt_score2 = np.ones_like(sample[1]['gt_class'])
- gt_score = np.concatenate(
- (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
- result['gt_score'] = gt_score
- if 'is_crowd' in sample[0]:
- is_crowd1 = sample[0]['is_crowd']
- is_crowd2 = sample[1]['is_crowd']
- is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
- result['is_crowd'] = is_crowd
- if 'difficult' in sample[0]:
- is_difficult1 = sample[0]['difficult']
- is_difficult2 = sample[1]['difficult']
- is_difficult = np.concatenate(
- (is_difficult1, is_difficult2), axis=0)
- result['difficult'] = is_difficult
- return result
- class RandomDistort(Transform):
- """
- Random color distortion.
- Args:
- brightness_range (float, optional): Range of brightness distortion.
- Defaults to .5.
- brightness_prob (float, optional): Probability of brightness distortion.
- Defaults to .5.
- contrast_range (float, optional): Range of contrast distortion.
- Defaults to .5.
- contrast_prob (float, optional): Probability of contrast distortion.
- Defaults to .5.
- saturation_range (float, optional): Range of saturation distortion.
- Defaults to .5.
- saturation_prob (float, optional): Probability of saturation distortion.
- Defaults to .5.
- hue_range (float, optional): Range of hue distortion. Defaults to .5.
- hue_prob (float, optional): Probability of hue distortion. Defaults to .5.
- random_apply (bool, optional): Apply the transformation in random (YOLO) or
- fixed (SSD) order. Defaults to True.
- count (int, optional): Number of distortions to apply. Defaults to 4.
- shuffle_channel (bool, optional): Whether to permute channels randomly.
- Defaults to False.
- """
- def __init__(self,
- brightness_range=0.5,
- brightness_prob=0.5,
- contrast_range=0.5,
- contrast_prob=0.5,
- saturation_range=0.5,
- saturation_prob=0.5,
- hue_range=18,
- hue_prob=0.5,
- random_apply=True,
- count=4,
- shuffle_channel=False):
- super(RandomDistort, self).__init__()
- self.brightness_range = [1 - brightness_range, 1 + brightness_range]
- self.brightness_prob = brightness_prob
- self.contrast_range = [1 - contrast_range, 1 + contrast_range]
- self.contrast_prob = contrast_prob
- self.saturation_range = [1 - saturation_range, 1 + saturation_range]
- self.saturation_prob = saturation_prob
- self.hue_range = [1 - hue_range, 1 + hue_range]
- self.hue_prob = hue_prob
- self.random_apply = random_apply
- self.count = count
- self.shuffle_channel = shuffle_channel
- def apply_hue(self, image):
- low, high = self.hue_range
- if np.random.uniform(0., 1.) < self.hue_prob:
- return image
- # It works, but the result differs from HSV version.
- delta = np.random.uniform(low, high)
- u = np.cos(delta * np.pi)
- w = np.sin(delta * np.pi)
- bt = np.array([[1.0, 0.0, 0.0], [0.0, u, -w], [0.0, w, u]])
- tyiq = np.array([[0.299, 0.587, 0.114], [0.596, -0.274, -0.321],
- [0.211, -0.523, 0.311]])
- ityiq = np.array([[1.0, 0.956, 0.621], [1.0, -0.272, -0.647],
- [1.0, -1.107, 1.705]])
- t = np.dot(np.dot(ityiq, bt), tyiq).T
- res_list = []
- channel = image.shape[2]
- for i in range(channel // 3):
- sub_img = image[:, :, 3 * i:3 * (i + 1)]
- sub_img = sub_img.astype(np.float32)
- sub_img = np.dot(image, t)
- res_list.append(sub_img)
- if channel % 3 != 0:
- i = channel % 3
- res_list.append(image[:, :, -i:])
- return np.concatenate(res_list, axis=2)
- def apply_saturation(self, image):
- low, high = self.saturation_range
- delta = np.random.uniform(low, high)
- if np.random.uniform(0., 1.) < self.saturation_prob:
- return image
- res_list = []
- channel = image.shape[2]
- for i in range(channel // 3):
- sub_img = image[:, :, 3 * i:3 * (i + 1)]
- sub_img = sub_img.astype(np.float32)
- # It works, but the result differs from HSV version.
- gray = sub_img * np.array(
- [[[0.299, 0.587, 0.114]]], dtype=np.float32)
- gray = gray.sum(axis=2, keepdims=True)
- gray *= (1.0 - delta)
- sub_img *= delta
- sub_img += gray
- res_list.append(sub_img)
- if channel % 3 != 0:
- i = channel % 3
- res_list.append(image[:, :, -i:])
- return np.concatenate(res_list, axis=2)
- def apply_contrast(self, image):
- low, high = self.contrast_range
- if np.random.uniform(0., 1.) < self.contrast_prob:
- return image
- delta = np.random.uniform(low, high)
- image = image.astype(np.float32)
- image *= delta
- return image
- def apply_brightness(self, image):
- low, high = self.brightness_range
- if np.random.uniform(0., 1.) < self.brightness_prob:
- return image
- delta = np.random.uniform(low, high)
- image = image.astype(np.float32)
- image += delta
- return image
- def apply(self, sample):
- if self.random_apply:
- functions = [
- self.apply_brightness, self.apply_contrast,
- self.apply_saturation, self.apply_hue
- ]
- distortions = np.random.permutation(functions)[:self.count]
- for func in distortions:
- sample['image'] = func(sample['image'])
- if 'image2' in sample:
- sample['image2'] = func(sample['image2'])
- return sample
- sample['image'] = self.apply_brightness(sample['image'])
- if 'image2' in sample:
- sample['image2'] = self.apply_brightness(sample['image2'])
- mode = np.random.randint(0, 2)
- if mode:
- sample['image'] = self.apply_contrast(sample['image'])
- if 'image2' in sample:
- sample['image2'] = self.apply_contrast(sample['image2'])
- sample['image'] = self.apply_saturation(sample['image'])
- sample['image'] = self.apply_hue(sample['image'])
- if 'image2' in sample:
- sample['image2'] = self.apply_saturation(sample['image2'])
- sample['image2'] = self.apply_hue(sample['image2'])
- if not mode:
- sample['image'] = self.apply_contrast(sample['image'])
- if 'image2' in sample:
- sample['image2'] = self.apply_contrast(sample['image2'])
- if self.shuffle_channel:
- if np.random.randint(0, 2):
- sample['image'] = sample['image'][..., np.random.permutation(3)]
- if 'image2' in sample:
- sample['image2'] = sample['image2'][
- ..., np.random.permutation(3)]
- return sample
- class RandomBlur(Transform):
- """
- Randomly blur input image(s).
- Args:
- prob (float): Probability of blurring.
- """
- def __init__(self, prob=0.1):
- super(RandomBlur, self).__init__()
- self.prob = prob
- def apply_im(self, image, radius):
- image = cv2.GaussianBlur(image, (radius, radius), 0, 0)
- return image
- def apply(self, sample):
- if self.prob <= 0:
- n = 0
- elif self.prob >= 1:
- n = 1
- else:
- n = int(1.0 / self.prob)
- if n > 0:
- if np.random.randint(0, n) == 0:
- radius = np.random.randint(3, 10)
- if radius % 2 != 1:
- radius = radius + 1
- if radius > 9:
- radius = 9
- sample['image'] = self.apply_im(sample['image'], radius)
- if 'image2' in sample:
- sample['image2'] = self.apply_im(sample['image2'], radius)
- return sample
- class Dehaze(Transform):
- """
- Dehaze input image(s).
- Args:
- gamma (bool, optional): Use gamma correction or not. Defaults to False.
- """
- def __init__(self, gamma=False):
- super(Dehaze, self).__init__()
- self.gamma = gamma
- def apply_im(self, image):
- image = F.dehaze(image, self.gamma)
- return image
- def apply(self, sample):
- sample['image'] = self.apply_im(sample['image'])
- if 'image2' in sample:
- sample['image2'] = self.apply_im(sample['image2'])
- return sample
- class ReduceDim(Transform):
- """
- Use PCA to reduce the dimension of input image(s).
- Args:
- joblib_path (str): Path of *.joblib file of PCA.
- apply_to_tar (bool, optional): Whether to apply transformation to the target
- image. Defaults to True.
- """
- def __init__(self, joblib_path, apply_to_tar=True):
- super(ReduceDim, self).__init__()
- ext = joblib_path.split(".")[-1]
- if ext != "joblib":
- raise ValueError("`joblib_path` must be *.joblib, not *.{}.".format(
- ext))
- self.pca = load(joblib_path)
- self.apply_to_tar = apply_to_tar
- def apply_im(self, image):
- H, W, C = image.shape
- n_im = np.reshape(image, (-1, C))
- im_pca = self.pca.transform(n_im)
- result = np.reshape(im_pca, (H, W, -1))
- return result
- def apply(self, sample):
- sample['image'] = self.apply_im(sample['image'])
- if 'image2' in sample:
- sample['image2'] = self.apply_im(sample['image2'])
- if 'target' in sample and self.apply_to_tar:
- sample['target'] = self.apply_im(sample['target'])
- return sample
- class SelectBand(Transform):
- """
- Select a set of bands of input image(s).
- Args:
- band_list (list, optional): Bands to select (band index starts from 1).
- Defaults to [1, 2, 3].
- apply_to_tar (bool, optional): Whether to apply transformation to the target
- image. Defaults to True.
- """
- def __init__(self, band_list=[1, 2, 3], apply_to_tar=True):
- super(SelectBand, self).__init__()
- self.band_list = band_list
- self.apply_to_tar = apply_to_tar
- def apply_im(self, image):
- image = F.select_bands(image, self.band_list)
- return image
- def apply(self, sample):
- sample['image'] = self.apply_im(sample['image'])
- if 'image2' in sample:
- sample['image2'] = self.apply_im(sample['image2'])
- if 'target' in sample and self.apply_to_tar:
- sample['target'] = self.apply_im(sample['target'])
- return sample
- class _PadBox(Transform):
- def __init__(self, num_max_boxes=50):
- """
- Pad zeros to bboxes if number of bboxes is less than `num_max_boxes`.
- Args:
- num_max_boxes (int, optional): Max number of bboxes. Defaults to 50.
- """
- self.num_max_boxes = num_max_boxes
- super(_PadBox, self).__init__()
- def apply(self, sample):
- gt_num = min(self.num_max_boxes, len(sample['gt_bbox']))
- num_max = self.num_max_boxes
- pad_bbox = np.zeros((num_max, 4), dtype=np.float32)
- if gt_num > 0:
- pad_bbox[:gt_num, :] = sample['gt_bbox'][:gt_num, :]
- sample['gt_bbox'] = pad_bbox
- if 'gt_class' in sample:
- pad_class = np.zeros((num_max, ), dtype=np.int32)
- if gt_num > 0:
- pad_class[:gt_num] = sample['gt_class'][:gt_num, 0]
- sample['gt_class'] = pad_class
- if 'gt_score' in sample:
- pad_score = np.zeros((num_max, ), dtype=np.float32)
- if gt_num > 0:
- pad_score[:gt_num] = sample['gt_score'][:gt_num, 0]
- sample['gt_score'] = pad_score
- # In training, for example in op ExpandImage,
- # bbox and gt_class are expanded, but difficult is not,
- # so judge by its length.
- if 'difficult' in sample:
- pad_diff = np.zeros((num_max, ), dtype=np.int32)
- if gt_num > 0:
- pad_diff[:gt_num] = sample['difficult'][:gt_num, 0]
- sample['difficult'] = pad_diff
- if 'is_crowd' in sample:
- pad_crowd = np.zeros((num_max, ), dtype=np.int32)
- if gt_num > 0:
- pad_crowd[:gt_num] = sample['is_crowd'][:gt_num, 0]
- sample['is_crowd'] = pad_crowd
- return sample
- class _NormalizeBox(Transform):
- def __init__(self):
- super(_NormalizeBox, self).__init__()
- def apply(self, sample):
- height, width = sample['image'].shape[:2]
- for i in range(sample['gt_bbox'].shape[0]):
- sample['gt_bbox'][i][0] = sample['gt_bbox'][i][0] / width
- sample['gt_bbox'][i][1] = sample['gt_bbox'][i][1] / height
- sample['gt_bbox'][i][2] = sample['gt_bbox'][i][2] / width
- sample['gt_bbox'][i][3] = sample['gt_bbox'][i][3] / height
- return sample
- class _BboxXYXY2XYWH(Transform):
- """
- Convert bbox XYXY format to XYWH format.
- """
- def __init__(self):
- super(_BboxXYXY2XYWH, self).__init__()
- def apply(self, sample):
- bbox = sample['gt_bbox']
- bbox[:, 2:4] = bbox[:, 2:4] - bbox[:, :2]
- bbox[:, :2] = bbox[:, :2] + bbox[:, 2:4] / 2.
- sample['gt_bbox'] = bbox
- return sample
- class _Permute(Transform):
- def __init__(self):
- super(_Permute, self).__init__()
- def apply(self, sample):
- sample['image'] = F.permute(sample['image'], False)
- if 'image2' in sample:
- sample['image2'] = F.permute(sample['image2'], False)
- if 'target' in sample:
- sample['target'] = F.permute(sample['target'], False)
- return sample
- class RandomSwap(Transform):
- """
- Randomly swap multi-temporal images.
- Args:
- prob (float, optional): Probability of swapping the input images.
- Default: 0.2.
- """
- def __init__(self, prob=0.2):
- super(RandomSwap, self).__init__()
- self.prob = prob
- def apply(self, sample):
- if 'image2' not in sample:
- raise ValueError("'image2' is not found in the sample.")
- if random.random() < self.prob:
- sample['image'], sample['image2'] = sample['image2'], sample[
- 'image']
- return sample
- class ReloadMask(Transform):
- def apply(self, sample):
- if 'mask' in sample or 'mask_ori' in sample:
- sample['mask'] = F.decode_seg_mask(sample['mask_ori'])
- if 'aux_masks' in sample or 'aux_masks_ori' in sample:
- sample['aux_masks'] = list(
- map(F.decode_seg_mask, sample['aux_masks_ori']))
- return sample
- class AppendIndex(Transform):
- """
- Append remote sensing index to input image(s).
- Args:
- index_type (str): Type of remote sensinng index. See supported
- index types in
- https://github.com/PaddlePaddle/PaddleRS/tree/develop/paddlers/transforms/indices.py .
- band_indices (dict, optional): Mapping of band names to band indices
- (starting from 1). See band names in
- https://github.com/PaddlePaddle/PaddleRS/tree/develop/paddlers/transforms/indices.py .
- Default: None.
- satellite (str, optional): Type of satellite. If set,
- band indices will be automatically determined accordingly. See supported satellites in
- https://github.com/PaddlePaddle/PaddleRS/tree/develop/paddlers/transforms/satellites.py .
- Default: None.
- """
- def __init__(self, index_type, band_indices=None, satellite=None, **kwargs):
- super(AppendIndex, self).__init__()
- self.index_type = index_type
- self.band_indices = band_indices
- self.satellite = satellite
- self._index_args = kwargs
- cls = getattr(indices, self.index_type)
- if self.satellite is not None:
- satellite_bands = getattr(satellites, self.satellite)
- self._compute_index = cls(satellite_bands, **self._index_args)
- else:
- if self.band_indices is None:
- raise ValueError(
- "At least one of `band_indices` and `satellite` must not be None."
- )
- else:
- self._compute_index = cls(self.band_indices, **self._index_args)
- def apply_im(self, image):
- index = self._compute_index(image)
- index = index[..., None].astype('float32')
- return np.concatenate([image, index], axis=-1)
- def apply(self, sample):
- sample['image'] = self.apply_im(sample['image'])
- if 'image2' in sample:
- sample['image2'] = self.apply_im(sample['image2'])
- return sample
- def get_attrs_for_serialization(self):
- return {
- 'index_type': self.index_type,
- 'band_indices': self.band_indices,
- 'satellite': self.satellite,
- **
- self._index_args
- }
- class MatchRadiance(Transform):
- """
- Perform relative radiometric correction between bi-temporal images.
- Args:
- method (str, optional): Method used to match the radiance of the
- bi-temporal images. Choices are {'hist', 'lsr', 'fft}. 'hist'
- stands for histogram matching, 'lsr' stands for least-squares
- regression, and 'fft' replaces the low-frequency components of
- the image to match the reference image. Default: 'hist'.
- """
- def __init__(self, method='hist'):
- super(MatchRadiance, self).__init__()
- if method == 'hist':
- self._match_func = F.match_histograms
- elif method == 'lsr':
- self._match_func = F.match_by_regression
- elif method == 'fft':
- self._match_func = F.match_lf_components
- else:
- raise ValueError(
- "{} is not a supported radiometric correction method.".format(
- method))
- self.method = method
- def apply(self, sample):
- if 'image2' not in sample:
- raise ValueError("'image2' is not found in the sample.")
- sample['image2'] = self._match_func(sample['image2'], sample['image'])
- return sample
- class Arrange(Transform):
- def __init__(self, mode):
- super().__init__()
- if mode not in ['train', 'eval', 'test', 'quant']:
- raise ValueError(
- "`mode` should be defined as one of ['train', 'eval', 'test', 'quant']!"
- )
- self.mode = mode
- class ArrangeSegmenter(Arrange):
- def apply(self, sample):
- if 'mask' in sample:
- mask = sample['mask']
- mask = mask.astype('int64')
- image = F.permute(sample['image'], False)
- if self.mode == 'train':
- return image, mask
- if self.mode == 'eval':
- return image, mask
- if self.mode == 'test':
- return image,
- class ArrangeChangeDetector(Arrange):
- def apply(self, sample):
- if 'mask' in sample:
- mask = sample['mask']
- mask = mask.astype('int64')
- image_t1 = F.permute(sample['image'], False)
- image_t2 = F.permute(sample['image2'], False)
- if self.mode == 'train':
- masks = [mask]
- if 'aux_masks' in sample:
- masks.extend(
- map(methodcaller('astype', 'int64'), sample['aux_masks']))
- return (
- image_t1,
- image_t2, ) + tuple(masks)
- if self.mode == 'eval':
- return image_t1, image_t2, mask
- if self.mode == 'test':
- return image_t1, image_t2
- class ArrangeClassifier(Arrange):
- def apply(self, sample):
- image = F.permute(sample['image'], False)
- if self.mode in ['train', 'eval']:
- return image, sample['label']
- else:
- return image,
- class ArrangeDetector(Arrange):
- def apply(self, sample):
- if self.mode == 'eval' and 'gt_poly' in sample:
- del sample['gt_poly']
- return sample
- class ArrangeRestorer(Arrange):
- def apply(self, sample):
- if 'target' in sample:
- target = F.permute(sample['target'], False)
- image = F.permute(sample['image'], False)
- if self.mode == 'train':
- return image, target
- if self.mode == 'eval':
- return image, target
- if self.mode == 'test':
- return image,
|