1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859 |
- import sys
- sys.path.append("/mnt/chulutao/PaddleRS")
- import paddlers as pdrs
- from paddlers import transforms as T
- # 下载和解压多光谱地块分类数据集
- dataset = 'https://paddleseg.bj.bcebos.com/dataset/remote_sensing_seg.zip'
- pdrs.utils.download_and_decompress(dataset, path='./data')
- # 定义训练和验证时的transforms
- # API说明:https://github.com/PaddlePaddle/paddlers/blob/develop/docs/apis/transforms/transforms.md
- channel = 10
- train_transforms = T.Compose([
- T.Resize(target_size=512),
- T.RandomHorizontalFlip(),
- T.Normalize(
- mean=[0.5] * 10, std=[0.5] * 10),
- ])
- eval_transforms = T.Compose([
- T.Resize(target_size=512),
- T.Normalize(
- mean=[0.5] * 10, std=[0.5] * 10),
- ])
- # 定义训练和验证所用的数据集
- # API说明:https://github.com/PaddlePaddle/paddlers/blob/develop/docs/apis/datasets.md
- train_dataset = pdrs.datasets.SegDataset(
- data_dir='./data/remote_sensing_seg',
- file_list='./data/remote_sensing_seg/train.txt',
- label_list='./data/remote_sensing_seg/labels.txt',
- transforms=train_transforms,
- num_workers=0,
- shuffle=True)
- eval_dataset = pdrs.datasets.SegDataset(
- data_dir='./data/remote_sensing_seg',
- file_list='./data/remote_sensing_seg/val.txt',
- label_list='./data/remote_sensing_seg/labels.txt',
- transforms=eval_transforms,
- num_workers=0,
- shuffle=False)
- # 初始化模型,并进行训练
- # 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/paddlers/blob/develop/docs/visualdl.md
- num_classes = len(train_dataset.labels)
- model = pdrs.tasks.DeepLabV3P(input_channel=channel, num_classes=num_classes, backbone='ResNet50_vd')
- # API说明:https://github.com/PaddlePaddle/paddlers/blob/develop/docs/apis/models/semantic_segmentation.md
- # 各参数介绍与调整说明:https://github.com/PaddlePaddle/paddlers/blob/develop/docs/parameters.md
- model.train(
- num_epochs=10,
- train_dataset=train_dataset,
- train_batch_size=4,
- eval_dataset=eval_dataset,
- learning_rate=0.01,
- save_dir='output/deeplabv3p_r50vd')
|