deeplabv3p_resnet50_multi_channel.py 2.0 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859
  1. import sys
  2. sys.path.append("/mnt/chulutao/PaddleRS")
  3. import paddlers as pdrs
  4. from paddlers import transforms as T
  5. # 下载和解压多光谱地块分类数据集
  6. dataset = 'https://paddleseg.bj.bcebos.com/dataset/remote_sensing_seg.zip'
  7. pdrs.utils.download_and_decompress(dataset, path='./data')
  8. # 定义训练和验证时的transforms
  9. # API说明:https://github.com/PaddlePaddle/paddlers/blob/develop/docs/apis/transforms/transforms.md
  10. channel = 10
  11. train_transforms = T.Compose([
  12. T.Resize(target_size=512),
  13. T.RandomHorizontalFlip(),
  14. T.Normalize(
  15. mean=[0.5] * 10, std=[0.5] * 10),
  16. ])
  17. eval_transforms = T.Compose([
  18. T.Resize(target_size=512),
  19. T.Normalize(
  20. mean=[0.5] * 10, std=[0.5] * 10),
  21. ])
  22. # 定义训练和验证所用的数据集
  23. # API说明:https://github.com/PaddlePaddle/paddlers/blob/develop/docs/apis/datasets.md
  24. train_dataset = pdrs.datasets.SegDataset(
  25. data_dir='./data/remote_sensing_seg',
  26. file_list='./data/remote_sensing_seg/train.txt',
  27. label_list='./data/remote_sensing_seg/labels.txt',
  28. transforms=train_transforms,
  29. num_workers=0,
  30. shuffle=True)
  31. eval_dataset = pdrs.datasets.SegDataset(
  32. data_dir='./data/remote_sensing_seg',
  33. file_list='./data/remote_sensing_seg/val.txt',
  34. label_list='./data/remote_sensing_seg/labels.txt',
  35. transforms=eval_transforms,
  36. num_workers=0,
  37. shuffle=False)
  38. # 初始化模型,并进行训练
  39. # 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/paddlers/blob/develop/docs/visualdl.md
  40. num_classes = len(train_dataset.labels)
  41. model = pdrs.tasks.DeepLabV3P(input_channel=channel, num_classes=num_classes, backbone='ResNet50_vd')
  42. # API说明:https://github.com/PaddlePaddle/paddlers/blob/develop/docs/apis/models/semantic_segmentation.md
  43. # 各参数介绍与调整说明:https://github.com/PaddlePaddle/paddlers/blob/develop/docs/parameters.md
  44. model.train(
  45. num_epochs=10,
  46. train_dataset=train_dataset,
  47. train_batch_size=4,
  48. eval_dataset=eval_dataset,
  49. learning_rate=0.01,
  50. save_dir='output/deeplabv3p_r50vd')