12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import paddle
- import paddle.nn as nn
- import math
- import cv2
- import numpy as np
- from ppgan.utils.download import get_path_from_url
- from ppgan.models.generators import GPEN
- from ppgan.faceutils.face_detection.detection.blazeface.utils import *
- GPEN_weights = 'https://paddlegan.bj.bcebos.com/models/GPEN-512.pdparams'
- class FaceEnhancement(object):
- def __init__(self, path_to_enhance=None, size=512, batch_size=1):
- super(FaceEnhancement, self).__init__()
- # Initialise the face detector
- if path_to_enhance is None:
- model_weights_path = get_path_from_url(GPEN_weights)
- model_weights = paddle.load(model_weights_path)
- else:
- model_weights = paddle.load(path_to_enhance)
- self.face_enhance = GPEN(size=512, style_dim=512, n_mlp=8)
- self.face_enhance.load_dict(model_weights)
- self.face_enhance.eval()
- self.size = size
- self.mask = np.zeros((512, 512), np.float32)
- cv2.rectangle(self.mask, (26, 26), (486, 486), (1, 1, 1), -1,
- cv2.LINE_AA)
- self.mask = cv2.GaussianBlur(self.mask, (101, 101), 11)
- self.mask = cv2.GaussianBlur(self.mask, (101, 101), 11)
- self.mask = paddle.tile(
- paddle.to_tensor(self.mask).unsqueeze(0).unsqueeze(-1),
- repeat_times=[batch_size, 1, 1, 3]).numpy()
- def enhance_from_image(self, img):
- if isinstance(img, np.ndarray):
- img, _ = resize_and_crop_image(img, 512)
- img = paddle.to_tensor(img).transpose([2, 0, 1])
- else:
- assert img.shape == [3, 512, 512]
- return self.enhance_from_batch(img.unsqueeze(0))[0]
- def enhance_from_batch(self, img):
- if isinstance(img, np.ndarray):
- img_ori, _ = resize_and_crop_batch(img, 512)
- img = paddle.to_tensor(img_ori).transpose([0, 3, 1, 2])
- else:
- assert img.shape[1:] == [3, 512, 512]
- img_ori = img.transpose([0, 2, 3, 1]).numpy()
- img_t = (img / 255. - 0.5) / 0.5
- with paddle.no_grad():
- out, __ = self.face_enhance(img_t)
- image_tensor = out * 0.5 + 0.5
- image_tensor = image_tensor.transpose([0, 2, 3, 1]) # RGB
- image_numpy = paddle.clip(image_tensor, 0, 1) * 255.0
- out = image_numpy.astype(np.uint8).cpu().numpy()
- return out * self.mask + (1 - self.mask) * img_ori
|