test_cd_models.py 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254
  1. # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from itertools import cycle
  15. import paddlers
  16. from rs_models.test_model import TestModel, allow_oom
  17. __all__ = [
  18. 'TestBITModel', 'TestCDNetModel', 'TestChangeStarModel', 'TestDSAMNetModel',
  19. 'TestDSIFNModel', 'TestFCEarlyFusionModel', 'TestFCSiamConcModel',
  20. 'TestFCSiamDiffModel', 'TestSNUNetModel', 'TestSTANetModel',
  21. 'TestChangeFormerModel', 'TestFCCDNModel'
  22. ]
  23. class TestCDModel(TestModel):
  24. EF_MODE = 'None' # Early-fusion strategy
  25. def check_output(self, output, target):
  26. self.assertIsInstance(output, list)
  27. self.check_output_equal(len(output), len(target))
  28. for o, t in zip(output, target):
  29. if isinstance(o, list):
  30. self.check_output(o, t)
  31. else:
  32. o = o.numpy()
  33. self.check_output_equal(o.shape, t.shape)
  34. def set_inputs(self):
  35. if self.EF_MODE == 'Concat':
  36. # Early-fusion
  37. def _gen_data(specs):
  38. for spec in specs:
  39. c = spec['in_channels'] // 2
  40. assert c * 2 == spec['in_channels']
  41. yield [self.get_randn_tensor(c), self.get_randn_tensor(c)]
  42. elif self.EF_MODE == 'None':
  43. # Late-fusion
  44. def _gen_data(specs):
  45. for spec in specs:
  46. c = spec.get('in_channels', 3)
  47. yield [self.get_randn_tensor(c), self.get_randn_tensor(c)]
  48. else:
  49. raise ValueError
  50. self.inputs = _gen_data(self.specs)
  51. def set_targets(self):
  52. def _gen_data(specs):
  53. for spec in specs:
  54. c = spec.get('num_classes', 2)
  55. yield [self.get_zeros_array(c)]
  56. self.targets = _gen_data(self.specs)
  57. class TestBITModel(TestCDModel):
  58. MODEL_CLASS = paddlers.rs_models.cd.BIT
  59. def set_specs(self):
  60. base_spec = dict(in_channels=3, num_classes=2)
  61. self.specs = [
  62. base_spec,
  63. dict(**base_spec, backbone='resnet34'),
  64. dict(**base_spec, n_stages=3),
  65. dict(**base_spec, enc_depth=4, dec_head_dim=16),
  66. dict(in_channels=4, num_classes=2),
  67. dict(in_channels=3, num_classes=8)
  68. ] # yapf: disable
  69. class TestCDNetModel(TestCDModel):
  70. MODEL_CLASS = paddlers.rs_models.cd.CDNet
  71. EF_MODE = 'Concat'
  72. def set_specs(self):
  73. self.specs = [
  74. dict(in_channels=6, num_classes=2),
  75. dict(in_channels=8, num_classes=2),
  76. dict(in_channels=6, num_classes=8)
  77. ] # yapf: disable
  78. class TestChangeStarModel(TestCDModel):
  79. MODEL_CLASS = paddlers.rs_models.cd.ChangeStar
  80. def set_specs(self):
  81. self.specs = [
  82. dict(num_classes=2), dict(num_classes=10),
  83. dict(num_classes=2, mid_channels=128, num_convs=2),
  84. dict(num_classes=2, _phase='eval', _stop_grad=True)
  85. ] # yapf: disable
  86. def set_targets(self):
  87. # Avoid allocation of large memories
  88. tar_c2 = [self.get_zeros_array(2)] * 4
  89. self.targets = [
  90. tar_c2,
  91. [self.get_zeros_array(10)] * 2 + [self.get_zeros_array(2)] * 2,
  92. tar_c2, [self.get_zeros_array(2)]
  93. ]
  94. class TestDSAMNetModel(TestCDModel):
  95. MODEL_CLASS = paddlers.rs_models.cd.DSAMNet
  96. def set_specs(self):
  97. base_spec = dict(in_channels=3, num_classes=2)
  98. self.specs = [
  99. base_spec,
  100. dict(in_channels=8, num_classes=2),
  101. dict(in_channels=3, num_classes=8),
  102. dict(**base_spec, ca_ratio=4, sa_kernel=5),
  103. dict(**base_spec, _phase='eval', _stop_grad=True)
  104. ] # yapf: disable
  105. def set_targets(self):
  106. # Avoid allocation of large memories
  107. tar_c2 = [self.get_zeros_array(2)] * 3
  108. self.targets = [
  109. tar_c2, tar_c2, [self.get_zeros_array(8)] * 3, tar_c2,
  110. [self.get_zeros_array(2)]
  111. ]
  112. class TestDSIFNModel(TestCDModel):
  113. MODEL_CLASS = paddlers.rs_models.cd.DSIFN
  114. def set_specs(self):
  115. self.specs = [
  116. dict(num_classes=2), dict(num_classes=10),
  117. dict(num_classes=2, use_dropout=True),
  118. dict(num_classes=2, _phase='eval', _stop_grad=True)
  119. ] # yapf: disable
  120. def set_targets(self):
  121. # Avoid allocation of large memories
  122. tar_c2 = [self.get_zeros_array(2)] * 5
  123. self.targets = [
  124. tar_c2, [self.get_zeros_array(10)] * 5, tar_c2,
  125. [self.get_zeros_array(2)]
  126. ]
  127. class TestFCEarlyFusionModel(TestCDModel):
  128. MODEL_CLASS = paddlers.rs_models.cd.FCEarlyFusion
  129. EF_MODE = 'Concat'
  130. def set_specs(self):
  131. self.specs = [
  132. dict(in_channels=6, num_classes=2),
  133. dict(in_channels=8, num_classes=2),
  134. dict(in_channels=6, num_classes=8),
  135. dict(in_channels=6, num_classes=2, use_dropout=True)
  136. ] # yapf: disable
  137. class TestFCSiamConcModel(TestCDModel):
  138. MODEL_CLASS = paddlers.rs_models.cd.FCSiamConc
  139. def set_specs(self):
  140. self.specs = [
  141. dict(in_channels=3, num_classes=2),
  142. dict(in_channels=8, num_classes=2),
  143. dict(in_channels=3, num_classes=8),
  144. dict(in_channels=3, num_classes=2, use_dropout=True)
  145. ] # yapf: disable
  146. class TestFCSiamDiffModel(TestCDModel):
  147. MODEL_CLASS = paddlers.rs_models.cd.FCSiamDiff
  148. def set_specs(self):
  149. self.specs = [
  150. dict(in_channels=3, num_classes=2),
  151. dict(in_channels=8, num_classes=2),
  152. dict(in_channels=3, num_classes=8),
  153. dict(in_channels=3, num_classes=2, use_dropout=True)
  154. ] # yapf: disable
  155. class TestSNUNetModel(TestCDModel):
  156. MODEL_CLASS = paddlers.rs_models.cd.SNUNet
  157. def set_specs(self):
  158. self.specs = [
  159. dict(in_channels=3, num_classes=2),
  160. dict(in_channels=8, num_classes=2),
  161. dict(in_channels=3, num_classes=8),
  162. dict(in_channels=3, num_classes=2, width=64)
  163. ] # yapf: disable
  164. @allow_oom
  165. class TestSTANetModel(TestCDModel):
  166. MODEL_CLASS = paddlers.rs_models.cd.STANet
  167. def set_specs(self):
  168. base_spec = dict(in_channels=3, num_classes=2)
  169. self.specs = [
  170. base_spec,
  171. dict(in_channels=8, num_classes=2),
  172. dict(in_channels=3, num_classes=8),
  173. dict(**base_spec, att_type='PAM'),
  174. dict(**base_spec, ds_factor=4)
  175. ] # yapf: disable
  176. @allow_oom
  177. class TestChangeFormerModel(TestCDModel):
  178. MODEL_CLASS = paddlers.rs_models.cd.ChangeFormer
  179. def set_specs(self):
  180. base_spec = dict(in_channels=3, num_classes=2)
  181. self.specs = [
  182. base_spec,
  183. dict(**base_spec, decoder_softmax=True),
  184. dict(**base_spec, embed_dim=56)
  185. ] # yapf: disable
  186. class TestFCCDNModel(TestCDModel):
  187. MODEL_CLASS = paddlers.rs_models.cd.FCCDN
  188. def set_specs(self):
  189. self.specs = [
  190. dict(in_channels=3, num_classes=2),
  191. dict(in_channels=8, num_classes=2),
  192. dict(in_channels=3, num_classes=8),
  193. dict(in_channels=3, num_classes=2, _phase='eval', _stop_grad=True)
  194. ] # yapf: disable
  195. def set_targets(self):
  196. b = self.DEFAULT_BATCH_SIZE
  197. h = self.DEFAULT_HW[0] // 2
  198. w = self.DEFAULT_HW[1] // 2
  199. tar_c2 = [
  200. self.get_zeros_array(2), [self.get_zeros_array(1, b, h, w)] * 2
  201. ]
  202. self.targets = [
  203. tar_c2, tar_c2, [self.get_zeros_array(8), tar_c2[1]],
  204. [self.get_zeros_array(2)]
  205. ]