condensenetv2_b_rs_mul.py 1.6 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152
  1. import paddlers as pdrs
  2. from paddlers import transforms as T
  3. # 定义训练和验证时的transforms
  4. train_transforms = T.Compose([
  5. # 读取影像
  6. T.DecodeImg(),
  7. T.SelectBand([5, 10, 15, 20, 25]), # for tet
  8. T.Resize(target_size=224),
  9. T.RandomHorizontalFlip(),
  10. T.Normalize(
  11. mean=[0.5, 0.5, 0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5, 0.5, 0.5]),
  12. T.ArrangeClassifier('train')
  13. ])
  14. eval_transforms = T.Compose([
  15. T.DecodeImg(), T.SelectBand([5, 10, 15, 20, 25]), T.Resize(target_size=224),
  16. T.Normalize(
  17. mean=[0.5, 0.5, 0.5, 0.5, 0.5],
  18. std=[0.5, 0.5, 0.5, 0.5, 0.5]), T.ArrangeClassifier('eval')
  19. ])
  20. # 定义训练和验证所用的数据集
  21. train_dataset = pdrs.datasets.ClasDataset(
  22. data_dir='tutorials/train/classification/DataSet',
  23. file_list='tutorials/train/classification/DataSet/train_list.txt',
  24. label_list='tutorials/train/classification/DataSet/label_list.txt',
  25. transforms=train_transforms,
  26. num_workers=0,
  27. shuffle=True)
  28. eval_dataset = pdrs.datasets.ClasDataset(
  29. data_dir='tutorials/train/classification/DataSet',
  30. file_list='tutorials/train/classification/DataSet/val_list.txt',
  31. label_list='tutorials/train/classification/DataSet/label_list.txt',
  32. transforms=eval_transforms,
  33. num_workers=0,
  34. shuffle=False)
  35. # 初始化模型
  36. num_classes = len(train_dataset.labels)
  37. model = pdrs.tasks.CondenseNetV2_b(in_channels=5, num_classes=num_classes)
  38. # 进行训练
  39. model.train(
  40. num_epochs=100,
  41. pretrain_weights=None,
  42. train_dataset=train_dataset,
  43. train_batch_size=4,
  44. eval_dataset=eval_dataset,
  45. learning_rate=3e-4,
  46. save_dir='output/condensenetv2_b')