123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # Transferred from https://github.com/rcdaudt/fully_convolutional_change_detection/blob/master/unet.py .
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from .layers import Conv3x3, MaxPool2x2, ConvTransposed3x3, Identity
- from .param_init import normal_init, constant_init
- class UNetEarlyFusion(nn.Layer):
- """
- The FC-EF implementation based on PaddlePaddle.
- The original article refers to
- Caye Daudt, R., et al. "Fully convolutional siamese networks for change detection"
- (https://arxiv.org/abs/1810.08462).
- Args:
- in_channels (int): The number of bands of the input images.
- num_classes (int): The number of target classes.
- use_dropout (bool, optional): A bool value that indicates whether to use dropout layers. When the model is trained
- on a relatively small dataset, the dropout layers help prevent overfitting. Default: False.
- """
- def __init__(self, in_channels, num_classes, use_dropout=False):
- super().__init__()
- C1, C2, C3, C4, C5 = 16, 32, 64, 128, 256
- self.use_dropout = use_dropout
- self.conv11 = Conv3x3(in_channels, C1, norm=True, act=True)
- self.do11 = self._make_dropout()
- self.conv12 = Conv3x3(C1, C1, norm=True, act=True)
- self.do12 = self._make_dropout()
- self.pool1 = MaxPool2x2()
- self.conv21 = Conv3x3(C1, C2, norm=True, act=True)
- self.do21 = self._make_dropout()
- self.conv22 = Conv3x3(C2, C2, norm=True, act=True)
- self.do22 = self._make_dropout()
- self.pool2 = MaxPool2x2()
- self.conv31 = Conv3x3(C2, C3, norm=True, act=True)
- self.do31 = self._make_dropout()
- self.conv32 = Conv3x3(C3, C3, norm=True, act=True)
- self.do32 = self._make_dropout()
- self.conv33 = Conv3x3(C3, C3, norm=True, act=True)
- self.do33 = self._make_dropout()
- self.pool3 = MaxPool2x2()
- self.conv41 = Conv3x3(C3, C4, norm=True, act=True)
- self.do41 = self._make_dropout()
- self.conv42 = Conv3x3(C4, C4, norm=True, act=True)
- self.do42 = self._make_dropout()
- self.conv43 = Conv3x3(C4, C4, norm=True, act=True)
- self.do43 = self._make_dropout()
- self.pool4 = MaxPool2x2()
- self.upconv4 = ConvTransposed3x3(C4, C4, output_padding=1)
- self.conv43d = Conv3x3(C5, C4, norm=True, act=True)
- self.do43d = self._make_dropout()
- self.conv42d = Conv3x3(C4, C4, norm=True, act=True)
- self.do42d = self._make_dropout()
- self.conv41d = Conv3x3(C4, C3, norm=True, act=True)
- self.do41d = self._make_dropout()
- self.upconv3 = ConvTransposed3x3(C3, C3, output_padding=1)
- self.conv33d = Conv3x3(C4, C3, norm=True, act=True)
- self.do33d = self._make_dropout()
- self.conv32d = Conv3x3(C3, C3, norm=True, act=True)
- self.do32d = self._make_dropout()
- self.conv31d = Conv3x3(C3, C2, norm=True, act=True)
- self.do31d = self._make_dropout()
- self.upconv2 = ConvTransposed3x3(C2, C2, output_padding=1)
- self.conv22d = Conv3x3(C3, C2, norm=True, act=True)
- self.do22d = self._make_dropout()
- self.conv21d = Conv3x3(C2, C1, norm=True, act=True)
- self.do21d = self._make_dropout()
- self.upconv1 = ConvTransposed3x3(C1, C1, output_padding=1)
- self.conv12d = Conv3x3(C2, C1, norm=True, act=True)
- self.do12d = self._make_dropout()
- self.conv11d = Conv3x3(C1, num_classes)
- self.init_weight()
- def forward(self, t1, t2):
- x = paddle.concat([t1, t2], axis=1)
- # Stage 1
- x11 = self.do11(self.conv11(x))
- x12 = self.do12(self.conv12(x11))
- x1p = self.pool1(x12)
- # Stage 2
- x21 = self.do21(self.conv21(x1p))
- x22 = self.do22(self.conv22(x21))
- x2p = self.pool2(x22)
- # Stage 3
- x31 = self.do31(self.conv31(x2p))
- x32 = self.do32(self.conv32(x31))
- x33 = self.do33(self.conv33(x32))
- x3p = self.pool3(x33)
- # Stage 4
- x41 = self.do41(self.conv41(x3p))
- x42 = self.do42(self.conv42(x41))
- x43 = self.do43(self.conv43(x42))
- x4p = self.pool4(x43)
- # Stage 4d
- x4d = self.upconv4(x4p)
- pad4 = (0, paddle.shape(x43)[3] - paddle.shape(x4d)[3], 0,
- paddle.shape(x43)[2] - paddle.shape(x4d)[2])
- x4d = paddle.concat([F.pad(x4d, pad=pad4, mode='replicate'), x43], 1)
- x43d = self.do43d(self.conv43d(x4d))
- x42d = self.do42d(self.conv42d(x43d))
- x41d = self.do41d(self.conv41d(x42d))
- # Stage 3d
- x3d = self.upconv3(x41d)
- pad3 = (0, paddle.shape(x33)[3] - paddle.shape(x3d)[3], 0,
- paddle.shape(x33)[2] - paddle.shape(x3d)[2])
- x3d = paddle.concat([F.pad(x3d, pad=pad3, mode='replicate'), x33], 1)
- x33d = self.do33d(self.conv33d(x3d))
- x32d = self.do32d(self.conv32d(x33d))
- x31d = self.do31d(self.conv31d(x32d))
- # Stage 2d
- x2d = self.upconv2(x31d)
- pad2 = (0, paddle.shape(x22)[3] - paddle.shape(x2d)[3], 0,
- paddle.shape(x22)[2] - paddle.shape(x2d)[2])
- x2d = paddle.concat([F.pad(x2d, pad=pad2, mode='replicate'), x22], 1)
- x22d = self.do22d(self.conv22d(x2d))
- x21d = self.do21d(self.conv21d(x22d))
- # Stage 1d
- x1d = self.upconv1(x21d)
- pad1 = (0, paddle.shape(x12)[3] - paddle.shape(x1d)[3], 0,
- paddle.shape(x12)[2] - paddle.shape(x1d)[2])
- x1d = paddle.concat([F.pad(x1d, pad=pad1, mode='replicate'), x12], 1)
- x12d = self.do12d(self.conv12d(x1d))
- x11d = self.conv11d(x12d)
- return [x11d]
- def init_weight(self):
- for sublayer in self.sublayers():
- if isinstance(sublayer, nn.Conv2D):
- normal_init(sublayer.weight, std=0.001)
- elif isinstance(sublayer, (nn.BatchNorm, nn.SyncBatchNorm)):
- constant_init(sublayer.weight, value=1.0)
- constant_init(sublayer.bias, value=0.0)
- def _make_dropout(self):
- if self.use_dropout:
- return nn.Dropout2D(p=0.2)
- else:
- return Identity()
|