123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100 |
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from .layers import make_norm, Conv3x3, CBAM
- from .stanet import Backbone, Decoder
- class DSAMNet(nn.Layer):
- """
- The DSAMNet implementation based on PaddlePaddle.
- The original article refers to
- Q. Shi, et al., "A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing
- Change Detection"
- (https://ieeexplore.ieee.org/document/9467555).
- Note that this implementation differs from the original work in two aspects:
- 1. We do not use multiple dilation rates in layer 4 of the ResNet backbone.
- 2. A classification head is used in place of the original metric learning-based head to stablize the training process.
- Args:
- in_channels (int): The number of bands of the input images.
- num_classes (int): The number of target classes.
- ca_ratio (int, optional): The channel reduction ratio for the channel attention module. Default: 8.
- sa_kernel (int, optional): The size of the convolutional kernel used in the spatial attention module. Default: 7.
- """
- def __init__(self, in_channels, num_classes, ca_ratio=8, sa_kernel=7):
- super(DSAMNet, self).__init__()
- WIDTH = 64
- self.backbone = Backbone(
- in_ch=in_channels, arch='resnet18', strides=(1, 1, 2, 2, 1))
- self.decoder = Decoder(WIDTH)
- self.cbam1 = CBAM(64, ratio=ca_ratio, kernel_size=sa_kernel)
- self.cbam2 = CBAM(64, ratio=ca_ratio, kernel_size=sa_kernel)
- self.dsl2 = DSLayer(64, num_classes, 32, stride=2, output_padding=1)
- self.dsl3 = DSLayer(128, num_classes, 32, stride=4, output_padding=3)
- self.conv_out = nn.Sequential(
- Conv3x3(
- WIDTH, WIDTH, norm=True, act=True),
- Conv3x3(WIDTH, num_classes))
- self.init_weight()
- def forward(self, t1, t2):
- f1 = self.backbone(t1)
- f2 = self.backbone(t2)
- y1 = self.decoder(f1)
- y2 = self.decoder(f2)
- y1 = self.cbam1(y1)
- y2 = self.cbam2(y2)
- out = paddle.abs(y1 - y2)
- out = F.interpolate(
- out, size=paddle.shape(t1)[2:], mode='bilinear', align_corners=True)
- pred = self.conv_out(out)
- if not self.training:
- return [pred]
- else:
- ds2 = self.dsl2(paddle.abs(f1[0] - f2[0]))
- ds3 = self.dsl3(paddle.abs(f1[1] - f2[1]))
- return [pred, ds2, ds3]
- def init_weight(self):
- pass
- class DSLayer(nn.Sequential):
- def __init__(self, in_ch, out_ch, itm_ch, **convd_kwargs):
- super(DSLayer, self).__init__(
- nn.Conv2DTranspose(
- in_ch, itm_ch, kernel_size=3, padding=1, **convd_kwargs),
- make_norm(itm_ch),
- nn.ReLU(),
- nn.Dropout2D(p=0.2),
- nn.Conv2DTranspose(
- itm_ch, out_ch, kernel_size=3, padding=1))
|