test_slider_predict.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254
  1. # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import os.path as osp
  15. import tempfile
  16. import paddlers as pdrs
  17. import paddlers.transforms as T
  18. from testing_utils import CommonTest
  19. class _TestSliderPredictNamespace:
  20. class TestSliderPredict(CommonTest):
  21. def test_blocksize_and_overlap_whole(self):
  22. # Original image size (256, 256)
  23. with tempfile.TemporaryDirectory() as td:
  24. # Whole-image inference using predict()
  25. pred_whole = self.model.predict(self.image_path,
  26. self.transforms)
  27. pred_whole = pred_whole['label_map']
  28. # Whole-image inference using slider_predict()
  29. save_dir = osp.join(td, 'pred1')
  30. self.model.slider_predict(self.image_path, save_dir, 256, 0,
  31. self.transforms)
  32. pred1 = T.decode_image(
  33. osp.join(save_dir, self.basename),
  34. read_raw=True,
  35. decode_sar=False)
  36. self.check_output_equal(pred1.shape, pred_whole.shape)
  37. # `block_size` == `overlap`
  38. save_dir = osp.join(td, 'pred2')
  39. with self.assertRaises(ValueError):
  40. self.model.slider_predict(self.image_path, save_dir, 128,
  41. 128, self.transforms)
  42. # `block_size` is a tuple
  43. save_dir = osp.join(td, 'pred3')
  44. self.model.slider_predict(self.image_path, save_dir, (128, 32),
  45. 0, self.transforms)
  46. pred3 = T.decode_image(
  47. osp.join(save_dir, self.basename),
  48. read_raw=True,
  49. decode_sar=False)
  50. self.check_output_equal(pred3.shape, pred_whole.shape)
  51. # `block_size` and `overlap` are both tuples
  52. save_dir = osp.join(td, 'pred4')
  53. self.model.slider_predict(self.image_path, save_dir, (128, 100),
  54. (10, 5), self.transforms)
  55. pred4 = T.decode_image(
  56. osp.join(save_dir, self.basename),
  57. read_raw=True,
  58. decode_sar=False)
  59. self.check_output_equal(pred4.shape, pred_whole.shape)
  60. # `block_size` larger than image size
  61. save_dir = osp.join(td, 'pred5')
  62. with self.assertRaises(ValueError):
  63. self.model.slider_predict(self.image_path, save_dir, 512, 0,
  64. self.transforms)
  65. def test_eager_load(self):
  66. with tempfile.TemporaryDirectory() as td:
  67. # Lazy
  68. save_dir = osp.join(td, 'lazy')
  69. self.model.slider_predict(self.image_path, save_dir, 128, 64,
  70. self.transforms)
  71. pred_lazy = T.decode_image(
  72. osp.join(save_dir, self.basename),
  73. read_raw=True,
  74. decode_sar=False)
  75. # Eager
  76. save_dir = osp.join(td, 'eager')
  77. self.model.slider_predict(
  78. self.image_path,
  79. save_dir,
  80. 128,
  81. 64,
  82. self.transforms,
  83. eager_load=True)
  84. pred_eager = T.decode_image(
  85. osp.join(save_dir, self.basename),
  86. read_raw=True,
  87. decode_sar=False)
  88. self.check_output_equal(pred_lazy, pred_eager)
  89. def test_merge_strategy(self):
  90. with tempfile.TemporaryDirectory() as td:
  91. # Whole-image inference using predict()
  92. pred_whole = self.model.predict(self.image_path,
  93. self.transforms)
  94. pred_whole = pred_whole['label_map']
  95. # 'keep_first'
  96. save_dir = osp.join(td, 'keep_first')
  97. self.model.slider_predict(
  98. self.image_path,
  99. save_dir,
  100. 128,
  101. 64,
  102. self.transforms,
  103. merge_strategy='keep_first')
  104. pred_keepfirst = T.decode_image(
  105. osp.join(save_dir, self.basename),
  106. read_raw=True,
  107. decode_sar=False)
  108. self.check_output_equal(pred_keepfirst.shape, pred_whole.shape)
  109. # 'keep_last'
  110. save_dir = osp.join(td, 'keep_last')
  111. self.model.slider_predict(
  112. self.image_path,
  113. save_dir,
  114. 128,
  115. 64,
  116. self.transforms,
  117. merge_strategy='keep_last')
  118. pred_keeplast = T.decode_image(
  119. osp.join(save_dir, self.basename),
  120. read_raw=True,
  121. decode_sar=False)
  122. self.check_output_equal(pred_keeplast.shape, pred_whole.shape)
  123. # 'accum'
  124. save_dir = osp.join(td, 'accum')
  125. self.model.slider_predict(
  126. self.image_path,
  127. save_dir,
  128. 128,
  129. 64,
  130. self.transforms,
  131. merge_strategy='accum')
  132. pred_accum = T.decode_image(
  133. osp.join(save_dir, self.basename),
  134. read_raw=True,
  135. decode_sar=False)
  136. self.check_output_equal(pred_accum.shape, pred_whole.shape)
  137. # 'swell'
  138. save_dir = osp.join(td, 'swell')
  139. self.model.slider_predict(
  140. self.image_path,
  141. save_dir,
  142. 128,
  143. 64,
  144. self.transforms,
  145. merge_strategy='swell')
  146. pred_swell = T.decode_image(
  147. osp.join(save_dir, self.basename),
  148. read_raw=True,
  149. decode_sar=False)
  150. self.check_output_equal(pred_swell.shape, pred_whole.shape)
  151. def test_geo_info(self):
  152. with tempfile.TemporaryDirectory() as td:
  153. _, geo_info_in = T.decode_image(
  154. self.ref_path, read_geo_info=True)
  155. self.model.slider_predict(self.image_path, td, 128, 0,
  156. self.transforms)
  157. _, geo_info_out = T.decode_image(
  158. osp.join(td, self.basename), read_geo_info=True)
  159. self.assertEqual(geo_info_out['geo_trans'],
  160. geo_info_in['geo_trans'])
  161. self.assertEqual(geo_info_out['geo_proj'],
  162. geo_info_in['geo_proj'])
  163. def test_batch_size(self):
  164. with tempfile.TemporaryDirectory() as td:
  165. # batch_size = 1
  166. save_dir = osp.join(td, 'bs1')
  167. self.model.slider_predict(
  168. self.image_path,
  169. save_dir,
  170. 128,
  171. 64,
  172. self.transforms,
  173. merge_strategy='keep_first',
  174. batch_size=1)
  175. pred_bs1 = T.decode_image(
  176. osp.join(save_dir, self.basename),
  177. read_raw=True,
  178. decode_sar=False)
  179. # batch_size = 4
  180. save_dir = osp.join(td, 'bs4')
  181. self.model.slider_predict(
  182. self.image_path,
  183. save_dir,
  184. 128,
  185. 64,
  186. self.transforms,
  187. merge_strategy='keep_first',
  188. batch_size=4)
  189. pred_bs4 = T.decode_image(
  190. osp.join(save_dir, self.basename),
  191. read_raw=True,
  192. decode_sar=False)
  193. self.check_output_equal(pred_bs4, pred_bs1)
  194. # batch_size = 8
  195. save_dir = osp.join(td, 'bs4')
  196. self.model.slider_predict(
  197. self.image_path,
  198. save_dir,
  199. 128,
  200. 64,
  201. self.transforms,
  202. merge_strategy='keep_first',
  203. batch_size=8)
  204. pred_bs8 = T.decode_image(
  205. osp.join(save_dir, self.basename),
  206. read_raw=True,
  207. decode_sar=False)
  208. self.check_output_equal(pred_bs8, pred_bs1)
  209. class TestSegSliderPredict(_TestSliderPredictNamespace.TestSliderPredict):
  210. def setUp(self):
  211. self.model = pdrs.tasks.seg.UNet(in_channels=10)
  212. self.transforms = T.Compose([
  213. T.DecodeImg(), T.Normalize([0.5] * 10, [0.5] * 10),
  214. T.ArrangeSegmenter('test')
  215. ])
  216. self.image_path = "data/ssst/multispectral.tif"
  217. self.ref_path = self.image_path
  218. self.basename = osp.basename(self.ref_path)
  219. class TestCDSliderPredict(_TestSliderPredictNamespace.TestSliderPredict):
  220. def setUp(self):
  221. self.model = pdrs.tasks.cd.BIT(in_channels=10)
  222. self.transforms = T.Compose([
  223. T.DecodeImg(), T.Normalize([0.5] * 10, [0.5] * 10),
  224. T.ArrangeChangeDetector('test')
  225. ])
  226. self.image_path = ("data/ssmt/multispectral_t1.tif",
  227. "data/ssmt/multispectral_t2.tif")
  228. self.ref_path = self.image_path[0]
  229. self.basename = osp.basename(self.ref_path)