classifier.py 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529
  1. # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import math
  15. import os.path as osp
  16. import numpy as np
  17. from collections import OrderedDict
  18. import paddle
  19. import paddle.nn.functional as F
  20. from paddle.static import InputSpec
  21. import paddlers.models.ppcls as paddleclas
  22. import paddlers
  23. from paddlers.transforms import arrange_transforms
  24. from paddlers.utils import get_single_card_bs, DisablePrint
  25. import paddlers.utils.logging as logging
  26. from .base import BaseModel
  27. from paddlers.models.ppcls.metric import build_metrics
  28. from paddlers.models.ppcls.loss import build_loss
  29. from paddlers.models.ppcls.data.postprocess import build_postprocess
  30. from paddlers.utils.checkpoint import cls_pretrain_weights_dict
  31. from paddlers.transforms import ImgDecoder, Resize
  32. __all__ = ["ResNet50_vd", "MobileNetV3_small_x1_0", "HRNet_W18_C"]
  33. class BaseClassifier(BaseModel):
  34. def __init__(self,
  35. model_name,
  36. num_classes=2,
  37. use_mixed_loss=False,
  38. **params):
  39. self.init_params = locals()
  40. if 'with_net' in self.init_params:
  41. del self.init_params['with_net']
  42. super(BaseClassifier, self).__init__('classifier')
  43. if not hasattr(paddleclas.arch.backbone, model_name):
  44. raise Exception("ERROR: There's no model named {}.".format(
  45. model_name))
  46. self.model_name = model_name
  47. self.num_classes = num_classes
  48. self.use_mixed_loss = use_mixed_loss
  49. self.metrics = None
  50. self.losses = None
  51. self.labels = None
  52. self._postprocess = None
  53. if params.get('with_net', True):
  54. params.pop('with_net', None)
  55. self.net = self.build_net(**params)
  56. self.find_unused_parameters = True
  57. def build_net(self, **params):
  58. with paddle.utils.unique_name.guard():
  59. net = paddleclas.arch.backbone.__dict__[self.model_name](
  60. class_num=self.num_classes, **params)
  61. return net
  62. def _fix_transforms_shape(self, image_shape):
  63. if hasattr(self, 'test_transforms'):
  64. if self.test_transforms is not None:
  65. has_resize_op = False
  66. resize_op_idx = -1
  67. normalize_op_idx = len(self.test_transforms.transforms)
  68. for idx, op in enumerate(self.test_transforms.transforms):
  69. name = op.__class__.__name__
  70. if name == 'Normalize':
  71. normalize_op_idx = idx
  72. if 'Resize' in name:
  73. has_resize_op = True
  74. resize_op_idx = idx
  75. if not has_resize_op:
  76. self.test_transforms.transforms.insert(
  77. normalize_op_idx, Resize(target_size=image_shape))
  78. else:
  79. self.test_transforms.transforms[resize_op_idx] = Resize(
  80. target_size=image_shape)
  81. def _get_test_inputs(self, image_shape):
  82. if image_shape is not None:
  83. if len(image_shape) == 2:
  84. image_shape = [1, 3] + image_shape
  85. self._fix_transforms_shape(image_shape[-2:])
  86. else:
  87. image_shape = [None, 3, -1, -1]
  88. self.fixed_input_shape = image_shape
  89. input_spec = [
  90. InputSpec(
  91. shape=image_shape, name='image', dtype='float32')
  92. ]
  93. return input_spec
  94. def run(self, net, inputs, mode):
  95. net_out = net(inputs[0])
  96. label = paddle.to_tensor(inputs[1], dtype="int64")
  97. outputs = OrderedDict()
  98. if mode == 'test':
  99. result = self._postprocess(net_out)
  100. outputs = result[0]
  101. if mode == 'eval':
  102. # print(self._postprocess(net_out)[0]) # for test
  103. label = paddle.unsqueeze(label, axis=-1)
  104. metric_dict = self.metrics(net_out, label)
  105. outputs['top1'] = metric_dict["top1"]
  106. outputs['top5'] = metric_dict["top5"]
  107. if mode == 'train':
  108. loss_list = self.losses(net_out, label)
  109. outputs['loss'] = loss_list['loss']
  110. return outputs
  111. def default_metric(self):
  112. default_config = [{"TopkAcc":{"topk": [1, 5]}}]
  113. return build_metrics(default_config)
  114. def default_loss(self):
  115. # TODO: use mixed loss and other loss
  116. default_config = [{"CELoss":{"weight": 1.0}}]
  117. return build_loss(default_config)
  118. def default_optimizer(self,
  119. parameters,
  120. learning_rate,
  121. num_epochs,
  122. num_steps_each_epoch,
  123. last_epoch=-1,
  124. L2_coeff=0.00007):
  125. decay_step = num_epochs * num_steps_each_epoch
  126. lr_scheduler = paddle.optimizer.lr.CosineAnnealingDecay(
  127. learning_rate, T_max=decay_step, eta_min=0, last_epoch=last_epoch)
  128. optimizer = paddle.optimizer.Momentum(
  129. learning_rate=lr_scheduler,
  130. parameters=parameters,
  131. momentum=0.9,
  132. weight_decay=paddle.regularizer.L2Decay(L2_coeff))
  133. return optimizer
  134. def default_postprocess(self, class_id_map_file):
  135. default_config = {
  136. "name": "Topk",
  137. "topk": 1,
  138. "class_id_map_file": class_id_map_file
  139. }
  140. return build_postprocess(default_config)
  141. def train(self,
  142. num_epochs,
  143. train_dataset,
  144. train_batch_size=2,
  145. eval_dataset=None,
  146. optimizer=None,
  147. save_interval_epochs=1,
  148. log_interval_steps=2,
  149. save_dir='output',
  150. pretrain_weights='IMAGENET',
  151. learning_rate=0.1,
  152. lr_decay_power=0.9,
  153. early_stop=False,
  154. early_stop_patience=5,
  155. use_vdl=True,
  156. resume_checkpoint=None):
  157. """
  158. Train the model.
  159. Args:
  160. num_epochs(int): The number of epochs.
  161. train_dataset(paddlers.dataset): Training dataset.
  162. train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 2.
  163. eval_dataset(paddlers.dataset, optional):
  164. Evaluation dataset. If None, the model will not be evaluated furing training process. Defaults to None.
  165. optimizer(paddle.optimizer.Optimizer or None, optional):
  166. Optimizer used in training. If None, a default optimizer is used. Defaults to None.
  167. save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
  168. log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
  169. save_dir(str, optional): Directory to save the model. Defaults to 'output'.
  170. pretrain_weights(str or None, optional):
  171. None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'CITYSCAPES'.
  172. learning_rate(float, optional): Learning rate for training. Defaults to .025.
  173. lr_decay_power(float, optional): Learning decay power. Defaults to .9.
  174. early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
  175. early_stop_patience(int, optional): Early stop patience. Defaults to 5.
  176. use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
  177. resume_checkpoint(str or None, optional): The path of the checkpoint to resume training from.
  178. If None, no training checkpoint will be resumed. At most one of `resume_checkpoint` and
  179. `pretrain_weights` can be set simultaneously. Defaults to None.
  180. """
  181. if self.status == 'Infer':
  182. logging.error(
  183. "Exported inference model does not support training.",
  184. exit=True)
  185. if pretrain_weights is not None and resume_checkpoint is not None:
  186. logging.error(
  187. "pretrain_weights and resume_checkpoint cannot be set simultaneously.",
  188. exit=True)
  189. self.labels = train_dataset.labels
  190. if self.losses is None:
  191. self.losses = self.default_loss()
  192. self.metrics = self.default_metric()
  193. self._postprocess = self.default_postprocess(train_dataset.label_list)
  194. # print(self._postprocess.class_id_map)
  195. if optimizer is None:
  196. num_steps_each_epoch = train_dataset.num_samples // train_batch_size
  197. self.optimizer = self.default_optimizer(
  198. self.net.parameters(), learning_rate, num_epochs,
  199. num_steps_each_epoch, lr_decay_power)
  200. else:
  201. self.optimizer = optimizer
  202. if pretrain_weights is not None and not osp.exists(pretrain_weights):
  203. if pretrain_weights not in cls_pretrain_weights_dict[
  204. self.model_name]:
  205. logging.warning(
  206. "Path of pretrain_weights('{}') does not exist!".format(
  207. pretrain_weights))
  208. logging.warning("Pretrain_weights is forcibly set to '{}'. "
  209. "If don't want to use pretrain weights, "
  210. "set pretrain_weights to be None.".format(
  211. cls_pretrain_weights_dict[self.model_name][
  212. 0]))
  213. pretrain_weights = cls_pretrain_weights_dict[self.model_name][
  214. 0]
  215. elif pretrain_weights is not None and osp.exists(pretrain_weights):
  216. if osp.splitext(pretrain_weights)[-1] != '.pdparams':
  217. logging.error(
  218. "Invalid pretrain weights. Please specify a '.pdparams' file.",
  219. exit=True)
  220. pretrained_dir = osp.join(save_dir, 'pretrain')
  221. is_backbone_weights = False # pretrain_weights == 'IMAGENET' # TODO: this is backbone
  222. self.net_initialize(
  223. pretrain_weights=pretrain_weights,
  224. save_dir=pretrained_dir,
  225. resume_checkpoint=resume_checkpoint,
  226. is_backbone_weights=is_backbone_weights)
  227. self.train_loop(
  228. num_epochs=num_epochs,
  229. train_dataset=train_dataset,
  230. train_batch_size=train_batch_size,
  231. eval_dataset=eval_dataset,
  232. save_interval_epochs=save_interval_epochs,
  233. log_interval_steps=log_interval_steps,
  234. save_dir=save_dir,
  235. early_stop=early_stop,
  236. early_stop_patience=early_stop_patience,
  237. use_vdl=use_vdl)
  238. def quant_aware_train(self,
  239. num_epochs,
  240. train_dataset,
  241. train_batch_size=2,
  242. eval_dataset=None,
  243. optimizer=None,
  244. save_interval_epochs=1,
  245. log_interval_steps=2,
  246. save_dir='output',
  247. learning_rate=0.0001,
  248. lr_decay_power=0.9,
  249. early_stop=False,
  250. early_stop_patience=5,
  251. use_vdl=True,
  252. resume_checkpoint=None,
  253. quant_config=None):
  254. """
  255. Quantization-aware training.
  256. Args:
  257. num_epochs(int): The number of epochs.
  258. train_dataset(paddlers.dataset): Training dataset.
  259. train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 2.
  260. eval_dataset(paddlers.dataset, optional):
  261. Evaluation dataset. If None, the model will not be evaluated furing training process. Defaults to None.
  262. optimizer(paddle.optimizer.Optimizer or None, optional):
  263. Optimizer used in training. If None, a default optimizer is used. Defaults to None.
  264. save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
  265. log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
  266. save_dir(str, optional): Directory to save the model. Defaults to 'output'.
  267. learning_rate(float, optional): Learning rate for training. Defaults to .025.
  268. lr_decay_power(float, optional): Learning decay power. Defaults to .9.
  269. early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
  270. early_stop_patience(int, optional): Early stop patience. Defaults to 5.
  271. use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
  272. quant_config(dict or None, optional): Quantization configuration. If None, a default rule of thumb
  273. configuration will be used. Defaults to None.
  274. resume_checkpoint(str or None, optional): The path of the checkpoint to resume quantization-aware training
  275. from. If None, no training checkpoint will be resumed. Defaults to None.
  276. """
  277. self._prepare_qat(quant_config)
  278. self.train(
  279. num_epochs=num_epochs,
  280. train_dataset=train_dataset,
  281. train_batch_size=train_batch_size,
  282. eval_dataset=eval_dataset,
  283. optimizer=optimizer,
  284. save_interval_epochs=save_interval_epochs,
  285. log_interval_steps=log_interval_steps,
  286. save_dir=save_dir,
  287. pretrain_weights=None,
  288. learning_rate=learning_rate,
  289. lr_decay_power=lr_decay_power,
  290. early_stop=early_stop,
  291. early_stop_patience=early_stop_patience,
  292. use_vdl=use_vdl,
  293. resume_checkpoint=resume_checkpoint)
  294. def evaluate(self, eval_dataset, batch_size=1, return_details=False):
  295. """
  296. Evaluate the model.
  297. Args:
  298. eval_dataset(paddlers.dataset): Evaluation dataset.
  299. batch_size(int, optional): Total batch size among all cards used for evaluation. Defaults to 1.
  300. return_details(bool, optional): Whether to return evaluation details. Defaults to False.
  301. Returns:
  302. collections.OrderedDict with key-value pairs:
  303. {"top1": `acc of top1`,
  304. "top5": `acc of top5`}.
  305. """
  306. arrange_transforms(
  307. model_type=self.model_type,
  308. transforms=eval_dataset.transforms,
  309. mode='eval')
  310. self.net.eval()
  311. nranks = paddle.distributed.get_world_size()
  312. local_rank = paddle.distributed.get_rank()
  313. if nranks > 1:
  314. # Initialize parallel environment if not done.
  315. if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
  316. ):
  317. paddle.distributed.init_parallel_env()
  318. batch_size_each_card = get_single_card_bs(batch_size)
  319. if batch_size_each_card > 1:
  320. batch_size_each_card = 1
  321. batch_size = batch_size_each_card * paddlers.env_info['num']
  322. logging.warning(
  323. "Segmenter only supports batch_size=1 for each gpu/cpu card " \
  324. "during evaluation, so batch_size " \
  325. "is forcibly set to {}.".format(batch_size))
  326. self.eval_data_loader = self.build_data_loader(
  327. eval_dataset, batch_size=batch_size, mode='eval')
  328. logging.info(
  329. "Start to evaluate(total_samples={}, total_steps={})...".format(
  330. eval_dataset.num_samples,
  331. math.ceil(eval_dataset.num_samples * 1.0 / batch_size)))
  332. top1s = []
  333. top5s = []
  334. with paddle.no_grad():
  335. for step, data in enumerate(self.eval_data_loader):
  336. data.append(eval_dataset.transforms.transforms)
  337. outputs = self.run(self.net, data, 'eval')
  338. top1s.append(outputs["top1"])
  339. top5s.append(outputs["top5"])
  340. top1 = np.mean(top1s)
  341. top5 = np.mean(top5s)
  342. eval_metrics = OrderedDict(zip(['top1', 'top5'], [top1, top5]))
  343. if return_details:
  344. # TODO: add details
  345. return eval_metrics, None
  346. return eval_metrics
  347. def predict(self, img_file, transforms=None):
  348. """
  349. Do inference.
  350. Args:
  351. Args:
  352. img_file(List[np.ndarray or str], str or np.ndarray):
  353. Image path or decoded image data in a BGR format, which also could constitute a list,
  354. meaning all images to be predicted as a mini-batch.
  355. transforms(paddlers.transforms.Compose or None, optional):
  356. Transforms for inputs. If None, the transforms for evaluation process will be used. Defaults to None.
  357. Returns:
  358. If img_file is a string or np.array, the result is a dict with key-value pairs:
  359. {"label map": `class_ids_map`, "scores_map": `label_names_map`}.
  360. If img_file is a list, the result is a list composed of dicts with the corresponding fields:
  361. class_ids_map(np.ndarray): class_ids
  362. scores_map(np.ndarray): scores
  363. label_names_map(np.ndarray): label_names
  364. """
  365. if transforms is None and not hasattr(self, 'test_transforms'):
  366. raise Exception("transforms need to be defined, now is None.")
  367. if transforms is None:
  368. transforms = self.test_transforms
  369. if isinstance(img_file, (str, np.ndarray)):
  370. images = [img_file]
  371. else:
  372. images = img_file
  373. batch_im, batch_origin_shape = self._preprocess(images, transforms,
  374. self.model_type)
  375. self.net.eval()
  376. data = (batch_im, batch_origin_shape, transforms.transforms)
  377. outputs = self.run(self.net, data, 'test')
  378. label_list = outputs['class_ids']
  379. score_list = outputs['scores']
  380. name_list = outputs['label_names']
  381. if isinstance(img_file, list):
  382. prediction = [{
  383. 'class_ids_map': l,
  384. 'scores_map': s,
  385. 'label_names_map': n,
  386. } for l, s, n in zip(label_list, score_list, name_list)]
  387. else:
  388. prediction = {
  389. 'class_ids': label_list[0],
  390. 'scores': score_list[0],
  391. 'label_names': name_list[0]
  392. }
  393. return prediction
  394. def _preprocess(self, images, transforms, to_tensor=True):
  395. arrange_transforms(
  396. model_type=self.model_type, transforms=transforms, mode='test')
  397. batch_im = list()
  398. batch_ori_shape = list()
  399. for im in images:
  400. sample = {'image': im}
  401. if isinstance(sample['image'], str):
  402. sample = ImgDecoder(to_rgb=False)(sample)
  403. ori_shape = sample['image'].shape[:2]
  404. im = transforms(sample)[0]
  405. batch_im.append(im)
  406. batch_ori_shape.append(ori_shape)
  407. if to_tensor:
  408. batch_im = paddle.to_tensor(batch_im)
  409. else:
  410. batch_im = np.asarray(batch_im)
  411. return batch_im, batch_ori_shape
  412. @staticmethod
  413. def get_transforms_shape_info(batch_ori_shape, transforms):
  414. batch_restore_list = list()
  415. for ori_shape in batch_ori_shape:
  416. restore_list = list()
  417. h, w = ori_shape[0], ori_shape[1]
  418. for op in transforms:
  419. if op.__class__.__name__ == 'Resize':
  420. restore_list.append(('resize', (h, w)))
  421. h, w = op.target_size
  422. elif op.__class__.__name__ == 'ResizeByShort':
  423. restore_list.append(('resize', (h, w)))
  424. im_short_size = min(h, w)
  425. im_long_size = max(h, w)
  426. scale = float(op.short_size) / float(im_short_size)
  427. if 0 < op.max_size < np.round(scale * im_long_size):
  428. scale = float(op.max_size) / float(im_long_size)
  429. h = int(round(h * scale))
  430. w = int(round(w * scale))
  431. elif op.__class__.__name__ == 'ResizeByLong':
  432. restore_list.append(('resize', (h, w)))
  433. im_long_size = max(h, w)
  434. scale = float(op.long_size) / float(im_long_size)
  435. h = int(round(h * scale))
  436. w = int(round(w * scale))
  437. elif op.__class__.__name__ == 'Padding':
  438. if op.target_size:
  439. target_h, target_w = op.target_size
  440. else:
  441. target_h = int(
  442. (np.ceil(h / op.size_divisor) * op.size_divisor))
  443. target_w = int(
  444. (np.ceil(w / op.size_divisor) * op.size_divisor))
  445. if op.pad_mode == -1:
  446. offsets = op.offsets
  447. elif op.pad_mode == 0:
  448. offsets = [0, 0]
  449. elif op.pad_mode == 1:
  450. offsets = [(target_h - h) // 2, (target_w - w) // 2]
  451. else:
  452. offsets = [target_h - h, target_w - w]
  453. restore_list.append(('padding', (h, w), offsets))
  454. h, w = target_h, target_w
  455. batch_restore_list.append(restore_list)
  456. return batch_restore_list
  457. class ResNet50_vd(BaseClassifier):
  458. def __init__(self,
  459. num_classes=2,
  460. use_mixed_loss=False,
  461. **params):
  462. super(ResNet50_vd, self).__init__(
  463. model_name='ResNet50_vd',
  464. num_classes=num_classes,
  465. use_mixed_loss=use_mixed_loss,
  466. **params)
  467. class MobileNetV3_small_x1_0(BaseClassifier):
  468. def __init__(self,
  469. num_classes=2,
  470. use_mixed_loss=False,
  471. **params):
  472. super(MobileNetV3_small_x1_0, self).__init__(
  473. model_name='MobileNetV3_small_x1_0',
  474. num_classes=num_classes,
  475. use_mixed_loss=use_mixed_loss,
  476. **params)
  477. class HRNet_W18_C(BaseClassifier):
  478. def __init__(self,
  479. num_classes=2,
  480. use_mixed_loss=False,
  481. **params):
  482. super(HRNet_W18_C, self).__init__(
  483. model_name='HRNet_W18_C',
  484. num_classes=num_classes,
  485. use_mixed_loss=use_mixed_loss,
  486. **params)