ppyolo.py 1.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354
  1. import sys
  2. sys.path.append("/ssd2/pengjuncai/PaddleRS")
  3. import paddlers as pdrs
  4. from paddlers import transforms as T
  5. train_transforms = T.Compose([
  6. T.MixupImage(mixup_epoch=-1), T.RandomDistort(),
  7. T.RandomExpand(im_padding_value=[123.675, 116.28, 103.53]), T.RandomCrop(),
  8. T.RandomHorizontalFlip(), T.BatchRandomResize(
  9. target_sizes=[320, 352, 384, 416, 448, 480, 512, 544, 576, 608],
  10. interp='RANDOM'), T.Normalize(
  11. mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  12. ])
  13. eval_transforms = T.Compose([
  14. T.Resize(
  15. target_size=608, interp='CUBIC'), T.Normalize(
  16. mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  17. ])
  18. train_dataset = pdrs.datasets.VOCDetection(
  19. data_dir='insect_det',
  20. file_list='insect_det/train_list.txt',
  21. label_list='insect_det/labels.txt',
  22. transforms=train_transforms,
  23. shuffle=True)
  24. eval_dataset = pdrs.datasets.VOCDetection(
  25. data_dir='insect_det',
  26. file_list='insect_det/val_list.txt',
  27. label_list='insect_det/labels.txt',
  28. transforms=eval_transforms,
  29. shuffle=False)
  30. num_classes = len(train_dataset.labels)
  31. model = pdrs.tasks.det.PPYOLO(num_classes=num_classes, backbone='ResNet50_vd_dcn')
  32. model.train(
  33. num_epochs=200,
  34. train_dataset=train_dataset,
  35. train_batch_size=8,
  36. eval_dataset=eval_dataset,
  37. pretrain_weights='COCO',
  38. learning_rate=0.005 / 12,
  39. warmup_steps=500,
  40. warmup_start_lr=0.0,
  41. save_interval_epochs=5,
  42. lr_decay_epochs=[85, 135],
  43. save_dir='output/ppyolo_r50vd_dcn',
  44. use_vdl=True)