123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354 |
- import sys
- sys.path.append("/ssd2/pengjuncai/PaddleRS")
- import paddlers as pdrs
- from paddlers import transforms as T
- train_transforms = T.Compose([
- T.MixupImage(mixup_epoch=-1), T.RandomDistort(),
- T.RandomExpand(im_padding_value=[123.675, 116.28, 103.53]), T.RandomCrop(),
- T.RandomHorizontalFlip(), T.BatchRandomResize(
- target_sizes=[320, 352, 384, 416, 448, 480, 512, 544, 576, 608],
- interp='RANDOM'), T.Normalize(
- mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
- ])
- eval_transforms = T.Compose([
- T.Resize(
- target_size=608, interp='CUBIC'), T.Normalize(
- mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
- ])
- train_dataset = pdrs.datasets.VOCDetection(
- data_dir='insect_det',
- file_list='insect_det/train_list.txt',
- label_list='insect_det/labels.txt',
- transforms=train_transforms,
- shuffle=True)
- eval_dataset = pdrs.datasets.VOCDetection(
- data_dir='insect_det',
- file_list='insect_det/val_list.txt',
- label_list='insect_det/labels.txt',
- transforms=eval_transforms,
- shuffle=False)
- num_classes = len(train_dataset.labels)
- model = pdrs.tasks.det.PPYOLO(num_classes=num_classes, backbone='ResNet50_vd_dcn')
- model.train(
- num_epochs=200,
- train_dataset=train_dataset,
- train_batch_size=8,
- eval_dataset=eval_dataset,
- pretrain_weights='COCO',
- learning_rate=0.005 / 12,
- warmup_steps=500,
- warmup_start_lr=0.0,
- save_interval_epochs=5,
- lr_decay_epochs=[85, 135],
- save_dir='output/ppyolo_r50vd_dcn',
- use_vdl=True)
|