123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- import paddlers as pdrs
- from paddlers import transforms as T
- DATA_DIR = './data/rsseg/'
- TRAIN_FILE_LIST_PATH = './data/rsseg/train.txt'
- EVAL_FILE_LIST_PATH = './data/rsseg/val.txt'
- LABEL_LIST_PATH = './data/rsseg/labels.txt'
- EXP_DIR = './output/factseg/'
- pdrs.utils.download_and_decompress(
- 'https://paddlers.bj.bcebos.com/datasets/rsseg.zip', path='./data/')
- train_transforms = [
-
- T.SelectBand([1, 2, 3]),
-
- T.Resize(target_size=512),
-
- T.RandomHorizontalFlip(prob=0.5),
-
- T.Normalize(
- mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
- ]
- eval_transforms = [
-
- T.SelectBand([1, 2, 3]),
- T.Resize(target_size=512),
-
- T.Normalize(
- mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
- T.ReloadMask()
- ]
- train_dataset = pdrs.datasets.SegDataset(
- data_dir=DATA_DIR,
- file_list=TRAIN_FILE_LIST_PATH,
- label_list=LABEL_LIST_PATH,
- transforms=train_transforms,
- num_workers=0,
- shuffle=True)
- eval_dataset = pdrs.datasets.SegDataset(
- data_dir=DATA_DIR,
- file_list=EVAL_FILE_LIST_PATH,
- label_list=LABEL_LIST_PATH,
- transforms=eval_transforms,
- num_workers=0,
- shuffle=False)
- model = pdrs.tasks.seg.FactSeg(num_classes=len(train_dataset.labels))
- model.train(
- num_epochs=10,
- train_dataset=train_dataset,
- train_batch_size=4,
- eval_dataset=eval_dataset,
- save_interval_epochs=5,
-
- log_interval_steps=4,
- save_dir=EXP_DIR,
-
- pretrain_weights='iSAID',
-
- learning_rate=0.001,
-
- early_stop=False,
-
- use_vdl=True,
-
- resume_checkpoint=None)
|