1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889 |
- import paddlers as pdrs
- from paddlers import transforms as T
- DATA_DIR = './data/airchange/'
- TRAIN_FILE_LIST_PATH = './data/airchange/train.txt'
- EVAL_FILE_LIST_PATH = './data/airchange/eval.txt'
- EXP_DIR = './output/dsamnet/'
- pdrs.utils.download_and_decompress(
- 'https://paddlers.bj.bcebos.com/datasets/airchange.zip', path='./data/')
- train_transforms = [
-
- T.RandomCrop(
-
- crop_size=256,
-
- aspect_ratio=[0.5, 2.0],
-
- scaling=[0.2, 1.0]),
-
- T.RandomHorizontalFlip(prob=0.5),
-
- T.Normalize(
- mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
- ]
- eval_transforms = [
-
- T.Normalize(
- mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
- T.ReloadMask()
- ]
- train_dataset = pdrs.datasets.CDDataset(
- data_dir=DATA_DIR,
- file_list=TRAIN_FILE_LIST_PATH,
- label_list=None,
- transforms=train_transforms,
- num_workers=0,
- shuffle=True,
- with_seg_labels=False,
- binarize_labels=True)
- eval_dataset = pdrs.datasets.CDDataset(
- data_dir=DATA_DIR,
- file_list=EVAL_FILE_LIST_PATH,
- label_list=None,
- transforms=eval_transforms,
- num_workers=0,
- shuffle=False,
- with_seg_labels=False,
- binarize_labels=True)
- model = pdrs.tasks.cd.DSAMNet()
- model.train(
- num_epochs=10,
- train_dataset=train_dataset,
- train_batch_size=4,
- eval_dataset=eval_dataset,
- save_interval_epochs=3,
-
- log_interval_steps=50,
- save_dir=EXP_DIR,
-
- early_stop=False,
-
- use_vdl=True,
-
- resume_checkpoint=None)
|