123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import argparse
- import paddlers
- import numpy as np
- import cv2
- from utils import Raster, raster2uint8, save_geotiff, time_it
- class MatchError(Exception):
- def __str__(self):
- return "Cannot match the two images."
- def _calcu_tf(im1, im2):
- orb = cv2.AKAZE_create()
- kp1, des1 = orb.detectAndCompute(im1, None)
- kp2, des2 = orb.detectAndCompute(im2, None)
- bf = cv2.BFMatcher()
- mathces = bf.knnMatch(des2, des1, k=2)
- good_matches = []
- for m, n in mathces:
- if m.distance < 0.75 * n.distance:
- good_matches.append([m])
- if len(good_matches) < 4:
- raise MatchError()
- src_automatic_points = np.float32([kp2[m[0].queryIdx].pt \
- for m in good_matches]).reshape(-1, 1, 2)
- den_automatic_points = np.float32([kp1[m[0].trainIdx].pt \
- for m in good_matches]).reshape(-1, 1, 2)
- H, _ = cv2.findHomography(src_automatic_points, den_automatic_points,
- cv2.RANSAC, 5.0)
- return H
- def _get_match_img(raster, bands):
- if len(bands) not in [1, 3]:
- raise ValueError("The lenght of bands must be 1 or 3.")
- band_array = []
- for b in bands:
- band_i = raster.GetRasterBand(b).ReadAsArray()
- band_array.append(band_i)
- if len(band_array) == 1:
- ima = raster2uint8(band_array[0])
- else:
- ima = raster2uint8(np.stack(band_array, axis=-1))
- ima = cv2.cvtColor(ima, cv2.COLOR_RGB2GRAY)
- return ima
- @time_it
- def match(im1_path,
- im2_path,
- save_path,
- im1_bands=[1, 2, 3],
- im2_bands=[1, 2, 3]):
- im1_ras = Raster(im1_path)
- im2_ras = Raster(im2_path)
- im1 = _get_match_img(im1_ras._src_data, im1_bands)
- im2 = _get_match_img(im2_ras._src_data, im2_bands)
- H = _calcu_tf(im1, im2)
- im2_arr_t = cv2.warpPerspective(im2_ras.getArray(), H,
- (im1_ras.width, im1_ras.height))
- save_geotiff(im2_arr_t, save_path, im1_ras.proj, im1_ras.geot,
- im1_ras.datatype)
- if __name__ == "__main__":
- parser = argparse.ArgumentParser(description="input parameters")
- parser.add_argument('--im1_path', type=str, required=True, \
- help="Path of time1 image (with geoinfo).")
- parser.add_argument('--im2_path', type=str, required=True, \
- help="Path of time2 image.")
- parser.add_argument('--save_path', type=str, required=True, \
- help="Path to save matching result.")
- parser.add_argument('--im1_bands', type=int, nargs="+", default=[1, 2, 3], \
- help="Bands of im1 to be used for matching, RGB or monochrome. The default value is [1, 2, 3].")
- parser.add_argument('--im2_bands', type=int, nargs="+", default=[1, 2, 3], \
- help="Bands of im2 to be used for matching, RGB or monochrome. The default value is [1, 2, 3].")
- args = parser.parse_args()
- match(args.im1_path, args.im2_path, args.save_path, args.im1_bands,
- args.im2_bands)
|