123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os.path as osp
- import tempfile
- import paddlers as pdrs
- import paddlers.transforms as T
- from testing_utils import CommonTest
- class _TestSliderPredictNamespace:
- class TestSliderPredict(CommonTest):
- def test_blocksize_and_overlap_whole(self):
- # Original image size (256, 256)
- with tempfile.TemporaryDirectory() as td:
- # Whole-image inference using predict()
- pred_whole = self.model.predict(self.image_path,
- self.transforms)
- pred_whole = pred_whole['label_map']
- # Whole-image inference using slider_predict()
- save_dir = osp.join(td, 'pred1')
- self.model.slider_predict(self.image_path, save_dir, 256, 0,
- self.transforms)
- pred1 = T.decode_image(
- osp.join(save_dir, self.basename),
- read_raw=True,
- decode_sar=False)
- self.check_output_equal(pred1.shape, pred_whole.shape)
- # `block_size` == `overlap`
- save_dir = osp.join(td, 'pred2')
- with self.assertRaises(ValueError):
- self.model.slider_predict(self.image_path, save_dir, 128,
- 128, self.transforms)
- # `block_size` is a tuple
- save_dir = osp.join(td, 'pred3')
- self.model.slider_predict(self.image_path, save_dir, (128, 32),
- 0, self.transforms)
- pred3 = T.decode_image(
- osp.join(save_dir, self.basename),
- read_raw=True,
- decode_sar=False)
- self.check_output_equal(pred3.shape, pred_whole.shape)
- # `block_size` and `overlap` are both tuples
- save_dir = osp.join(td, 'pred4')
- self.model.slider_predict(self.image_path, save_dir, (128, 100),
- (10, 5), self.transforms)
- pred4 = T.decode_image(
- osp.join(save_dir, self.basename),
- read_raw=True,
- decode_sar=False)
- self.check_output_equal(pred4.shape, pred_whole.shape)
- # `block_size` larger than image size
- save_dir = osp.join(td, 'pred5')
- with self.assertRaises(ValueError):
- self.model.slider_predict(self.image_path, save_dir, 512, 0,
- self.transforms)
- def test_eager_load(self):
- with tempfile.TemporaryDirectory() as td:
- # Lazy
- save_dir = osp.join(td, 'lazy')
- self.model.slider_predict(self.image_path, save_dir, 128, 64,
- self.transforms)
- pred_lazy = T.decode_image(
- osp.join(save_dir, self.basename),
- read_raw=True,
- decode_sar=False)
- # Eager
- save_dir = osp.join(td, 'eager')
- self.model.slider_predict(
- self.image_path,
- save_dir,
- 128,
- 64,
- self.transforms,
- eager_load=True)
- pred_eager = T.decode_image(
- osp.join(save_dir, self.basename),
- read_raw=True,
- decode_sar=False)
- self.check_output_equal(pred_lazy, pred_eager)
- def test_merge_strategy(self):
- with tempfile.TemporaryDirectory() as td:
- # Whole-image inference using predict()
- pred_whole = self.model.predict(self.image_path,
- self.transforms)
- pred_whole = pred_whole['label_map']
- # 'keep_first'
- save_dir = osp.join(td, 'keep_first')
- self.model.slider_predict(
- self.image_path,
- save_dir,
- 128,
- 64,
- self.transforms,
- merge_strategy='keep_first')
- pred_keepfirst = T.decode_image(
- osp.join(save_dir, self.basename),
- read_raw=True,
- decode_sar=False)
- self.check_output_equal(pred_keepfirst.shape, pred_whole.shape)
- # 'keep_last'
- save_dir = osp.join(td, 'keep_last')
- self.model.slider_predict(
- self.image_path,
- save_dir,
- 128,
- 64,
- self.transforms,
- merge_strategy='keep_last')
- pred_keeplast = T.decode_image(
- osp.join(save_dir, self.basename),
- read_raw=True,
- decode_sar=False)
- self.check_output_equal(pred_keeplast.shape, pred_whole.shape)
- # 'accum'
- save_dir = osp.join(td, 'accum')
- self.model.slider_predict(
- self.image_path,
- save_dir,
- 128,
- 64,
- self.transforms,
- merge_strategy='accum')
- pred_accum = T.decode_image(
- osp.join(save_dir, self.basename),
- read_raw=True,
- decode_sar=False)
- self.check_output_equal(pred_accum.shape, pred_whole.shape)
- # 'swell'
- save_dir = osp.join(td, 'swell')
- self.model.slider_predict(
- self.image_path,
- save_dir,
- 128,
- 64,
- self.transforms,
- merge_strategy='swell')
- pred_swell = T.decode_image(
- osp.join(save_dir, self.basename),
- read_raw=True,
- decode_sar=False)
- self.check_output_equal(pred_swell.shape, pred_whole.shape)
- def test_geo_info(self):
- with tempfile.TemporaryDirectory() as td:
- _, geo_info_in = T.decode_image(
- self.ref_path, read_geo_info=True)
- self.model.slider_predict(self.image_path, td, 128, 0,
- self.transforms)
- _, geo_info_out = T.decode_image(
- osp.join(td, self.basename), read_geo_info=True)
- self.assertEqual(geo_info_out['geo_trans'],
- geo_info_in['geo_trans'])
- self.assertEqual(geo_info_out['geo_proj'],
- geo_info_in['geo_proj'])
- def test_batch_size(self):
- with tempfile.TemporaryDirectory() as td:
- # batch_size = 1
- save_dir = osp.join(td, 'bs1')
- self.model.slider_predict(
- self.image_path,
- save_dir,
- 128,
- 64,
- self.transforms,
- merge_strategy='keep_first',
- batch_size=1)
- pred_bs1 = T.decode_image(
- osp.join(save_dir, self.basename),
- read_raw=True,
- decode_sar=False)
- # batch_size = 4
- save_dir = osp.join(td, 'bs4')
- self.model.slider_predict(
- self.image_path,
- save_dir,
- 128,
- 64,
- self.transforms,
- merge_strategy='keep_first',
- batch_size=4)
- pred_bs4 = T.decode_image(
- osp.join(save_dir, self.basename),
- read_raw=True,
- decode_sar=False)
- self.check_output_equal(pred_bs4, pred_bs1)
- # batch_size = 8
- save_dir = osp.join(td, 'bs4')
- self.model.slider_predict(
- self.image_path,
- save_dir,
- 128,
- 64,
- self.transforms,
- merge_strategy='keep_first',
- batch_size=8)
- pred_bs8 = T.decode_image(
- osp.join(save_dir, self.basename),
- read_raw=True,
- decode_sar=False)
- self.check_output_equal(pred_bs8, pred_bs1)
- class TestSegSliderPredict(_TestSliderPredictNamespace.TestSliderPredict):
- def setUp(self):
- self.model = pdrs.tasks.seg.UNet(in_channels=10)
- self.transforms = [T.Normalize([0.5] * 10, [0.5] * 10)]
- self.image_path = "data/ssst/multispectral.tif"
- self.ref_path = self.image_path
- self.basename = osp.basename(self.ref_path)
- class TestCDSliderPredict(_TestSliderPredictNamespace.TestSliderPredict):
- def setUp(self):
- self.model = pdrs.tasks.cd.BIT(in_channels=10)
- self.transforms = [T.Normalize([0.5] * 10, [0.5] * 10)]
- self.image_path = ("data/ssmt/multispectral_t1.tif",
- "data/ssmt/multispectral_t2.tif")
- self.ref_path = self.image_path[0]
- self.basename = osp.basename(self.ref_path)
|