123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363 |
- #!/usr/bin/env bash
- source test_tipc/common_func.sh
- FILENAME=$1
- # $MODE be one of {'lite_train_lite_infer' 'lite_train_whole_infer' 'whole_train_whole_infer', 'whole_infer'}
- MODE=$2
- dataline=$(awk 'NR>=1{print}' $FILENAME)
- # Parse params
- IFS=$'\n'
- lines=(${dataline})
- # Training params
- task_name=$(parse_first_value "${lines[1]}")
- model_name=$(parse_second_value "${lines[1]}")
- python=$(func_parser_value "${lines[2]}")
- gpu_list=$(func_parser_value "${lines[3]}")
- train_use_gpu_key=$(func_parser_key "${lines[4]}")
- train_use_gpu_value=$(func_parser_value "${lines[4]}")
- autocast_list=$(func_parser_value "${lines[5]}")
- autocast_key=$(func_parser_key "${lines[5]}")
- epoch_key=$(func_parser_key "${lines[6]}")
- epoch_value=$(func_parser_params "${lines[6]}")
- save_model_key=$(func_parser_key "${lines[7]}")
- train_batch_key=$(func_parser_key "${lines[8]}")
- train_batch_value=$(func_parser_params "${lines[8]}")
- pretrain_model_key=$(func_parser_key "${lines[9]}")
- pretrain_model_value=$(func_parser_value "${lines[9]}")
- train_config_key=$(func_parser_key "${lines[10]}")
- train_config_value=$(func_parser_params "${lines[10]}")
- train_model_name=$(func_parser_value "${lines[11]}")
- train_param_key1=$(func_parser_key "${lines[12]}")
- train_param_value1=$(func_parser_value "${lines[12]}")
- trainer_list=$(func_parser_value "${lines[14]}")
- trainer_norm=$(func_parser_key "${lines[15]}")
- norm_trainer=$(func_parser_value "${lines[15]}")
- pact_key=$(func_parser_key "${lines[16]}")
- pact_trainer=$(func_parser_value "${lines[16]}")
- fpgm_key=$(func_parser_key "${lines[17]}")
- fpgm_trainer=$(func_parser_value "${lines[17]}")
- distill_key=$(func_parser_key "${lines[18]}")
- distill_trainer=$(func_parser_value "${lines[18]}")
- trainer_key1=$(func_parser_key "${lines[19]}")
- trainer_value1=$(func_parser_value "${lines[19]}")
- trainer_key2=$(func_parser_key "${lines[20]}")
- trainer_value2=$(func_parser_value "${lines[20]}")
- eval_py=$(func_parser_value "${lines[23]}")
- eval_key1=$(func_parser_key "${lines[24]}")
- eval_value1=$(func_parser_value "${lines[24]}")
- save_infer_key=$(func_parser_key "${lines[27]}")
- export_weight=$(func_parser_key "${lines[28]}")
- export_shape_key=$(func_parser_key "${lines[29]}")
- export_shape_value=$(func_parser_value "${lines[29]}")
- norm_export=$(func_parser_value "${lines[30]}")
- pact_export=$(func_parser_value "${lines[31]}")
- fpgm_export=$(func_parser_value "${lines[32]}")
- distill_export=$(func_parser_value "${lines[33]}")
- export_key1=$(func_parser_key "${lines[34]}")
- export_value1=$(func_parser_value "${lines[34]}")
- export_key2=$(func_parser_key "${lines[35]}")
- export_value2=$(func_parser_value "${lines[35]}")
- inference_dir=$(func_parser_value "${lines[36]}")
- # Params of inference model
- infer_model_dir_list=$(func_parser_value "${lines[37]}")
- infer_export_list=$(func_parser_value "${lines[38]}")
- infer_is_quant=$(func_parser_value "${lines[39]}")
- # Inference params
- inference_py=$(func_parser_value "${lines[40]}")
- use_gpu_key=$(func_parser_key "${lines[41]}")
- use_gpu_list=$(func_parser_value "${lines[41]}")
- use_mkldnn_key=$(func_parser_key "${lines[42]}")
- use_mkldnn_list=$(func_parser_value "${lines[42]}")
- cpu_threads_key=$(func_parser_key "${lines[43]}")
- cpu_threads_list=$(func_parser_value "${lines[43]}")
- batch_size_key=$(func_parser_key "${lines[44]}")
- batch_size_list=$(func_parser_value "${lines[44]}")
- use_trt_key=$(func_parser_key "${lines[45]}")
- use_trt_list=$(func_parser_value "${lines[45]}")
- precision_key=$(func_parser_key "${lines[46]}")
- precision_list=$(func_parser_value "${lines[46]}")
- infer_model_key=$(func_parser_key "${lines[47]}")
- infer_config_key=$(func_parser_key "${lines[48]}")
- infer_config_value=$(func_parser_value "${lines[48]}")
- save_log_key=$(func_parser_key "${lines[49]}")
- benchmark_key=$(func_parser_key "${lines[50]}")
- benchmark_value=$(func_parser_value "${lines[50]}")
- infer_key1=$(func_parser_key "${lines[51]}")
- infer_value1=$(func_parser_value "${lines[51]}")
- infer_key2=$(func_parser_key "${lines[52]}")
- infer_value2=$(func_parser_value "${lines[52]}")
- OUT_PATH="./test_tipc/output/${task_name}/${model_name}/${MODE}"
- mkdir -p ${OUT_PATH}
- status_log="${OUT_PATH}/results_python.log"
- echo "------------------------ ${MODE} ------------------------" >> "${status_log}"
- # Parse extra args
- parse_extra_args "${lines[@]}"
- for params in ${extra_args[*]}; do
- IFS=':'
- arr=(${params})
- key=${arr[0]}
- value=${arr[1]}
- :
- done
- function func_inference() {
- local IFS='|'
- local _python=$1
- local _script="$2"
- local _model_dir="$3"
- local _log_path="$4"
- local _config="$5"
- local set_infer_config=$(func_set_params "${infer_config_key}" "${_config}")
- local set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
- local set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
- local set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
- local set_infer_params2=$(func_set_params "${infer_key2}" "${infer_value2}")
- # Do inference
- for use_gpu in ${use_gpu_list[*]}; do
- local set_device=$(func_set_params "${use_gpu_key}" "${use_gpu}")
- if [ ${use_gpu} = 'False' ] || [ ${use_gpu} = 'cpu' ]; then
- for use_mkldnn in ${use_mkldnn_list[*]}; do
- if [ ${use_mkldnn} = 'False' ]; then
- continue
- fi
- for precision in ${precision_list[*]}; do
- if [ ${use_mkldnn} = 'False' ] && [ ${precision} = 'fp16' ]; then
- continue
- fi # Skip when enable fp16 but disable mkldnn
- for threads in ${cpu_threads_list[*]}; do
- for batch_size in ${batch_size_list[*]}; do
- local _save_log_path="${_log_path}/python_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_precision_${precision}_batchsize_${batch_size}.log"
- local infer_value1="${_log_path}/python_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_precision_${precision}_batchsize_${batch_size}_results"
- local set_mkldnn=$(func_set_params "${use_mkldnn_key}" "${use_mkldnn}")
- local set_precision=$(func_set_params "${precision_key}" "${precision}")
- local set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
- local set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
-
- local cmd="${_python} ${_script} ${set_config} ${set_device} ${set_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_benchmark} ${set_precision} ${set_infer_params1} ${set_infer_params2}"
- echo ${cmd}
- run_command "${cmd}" "${_save_log_path}"
-
- last_status=${PIPESTATUS[0]}
- status_check ${last_status} "${cmd}" "${status_log}" "${model_name}"
- done
- done
- done
- done
- elif [ ${use_gpu} = 'True' ] || [ ${use_gpu} = 'gpu' ]; then
- for use_trt in ${use_trt_list[*]}; do
- for precision in ${precision_list[*]}; do
- if [ ${precision} = 'fp16' ] && [ ${use_trt} = 'False' ]; then
- continue
- fi # Skip when enable fp16 but disable trt
- for batch_size in ${batch_size_list[*]}; do
- local _save_log_path="${_log_path}/python_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
- local infer_value1="${_log_path}/python_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}_results"
- local set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}")
- local set_precision=$(func_set_params "${precision_key}" "${precision}")
- local set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
-
- local cmd="${_python} ${_script} ${set_config} ${set_device} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_benchmark} ${set_infer_params2}"
- echo ${cmd}
- run_command "${cmd}" "${_save_log_path}"
- last_status=${PIPESTATUS[0]}
- status_check $last_status "${cmd}" "${status_log}" "${model_name}"
- done
- done
- done
- else
- echo "Currently, hardwares other than CPU and GPU are not supported!"
- fi
- done
- }
- if [ ${MODE} = 'whole_infer' ]; then
- GPUID=$3
- if [ ${#GPUID} -le 0 ]; then
- env=""
- else
- env="export CUDA_VISIBLE_DEVICES=${GPUID}"
- fi
- if [ ${infer_model_dir_list} == 'null' ]; then
- echo -e "\033[33m No inference model is specified! \033[0m"
- exit 1
- fi
- # Set CUDA_VISIBLE_DEVICES
- eval ${env}
- export count=0
- IFS='|'
- infer_run_exports=(${infer_export_list})
- for infer_model in ${infer_model_dir_list[*]}; do
- # Run export
- if [ ${infer_run_exports[count]} != 'null' ]; then
- save_infer_dir="${infer_model}/static"
- set_export_weight=$(func_set_params "${export_weight}" "${infer_model}")
- set_export_shape=$(func_set_params "${export_shape_key}" "${export_shape_value}")
- set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}")
-
- export_cmd="${python} ${infer_run_exports[count]} ${set_export_weight} ${set_save_infer_key} ${set_export_shape}"
- echo ${infer_run_exports[count]}
- eval ${export_cmd}
-
- status_export=$?
- status_check ${status_export} "${export_cmd}" "${status_log}" "${model_name}"
- else
- save_infer_dir=${infer_model}
- fi
- # Run inference
- func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${OUT_PATH}" "${infer_config_value}"
- count=$((${count} + 1))
- done
- else
- IFS='|'
- export count=0
- USE_GPU_KEY=(${train_use_gpu_value})
- for gpu in ${gpu_list[*]}; do
- train_use_gpu=${USE_GPU_KEY[count]}
- count=$((${count} + 1))
- ips=""
- if [ ${gpu} = '-1' ]; then
- env=""
- elif [ ${#gpu} -le 1 ]; then
- env="export CUDA_VISIBLE_DEVICES=${gpu}"
- eval ${env}
- elif [ ${#gpu} -le 15 ]; then
- IFS=','
- array=(${gpu})
- env="export CUDA_VISIBLE_DEVICES=${array[0]}"
- IFS='|'
- else
- IFS=';'
- array=(${gpu})
- ips=${array[0]}
- gpu=${array[1]}
- IFS='|'
- env=""
- fi
- for autocast in ${autocast_list[*]}; do
- if [ ${autocast} = 'amp' ]; then
- set_amp_config="Global.use_amp=True Global.scale_loss=1024.0 Global.use_dynamic_loss_scaling=True"
- else
- set_amp_config=""
- fi
- for trainer in ${trainer_list[*]}; do
- if [ ${trainer} = ${pact_key} ]; then
- run_train=${pact_trainer}
- run_export=${pact_export}
- elif [ ${trainer} = "${fpgm_key}" ]; then
- run_train=${fpgm_trainer}
- run_export=${fpgm_export}
- elif [ ${trainer} = "${distill_key}" ]; then
- run_train=${distill_trainer}
- run_export=${distill_export}
- elif [ ${trainer} = ${trainer_key1} ]; then
- run_train=${trainer_value1}
- run_export=${export_value1}
- elif [[ ${trainer} = ${trainer_key2} ]]; then
- run_train=${trainer_value2}
- run_export=${export_value2}
- else
- run_train=${norm_trainer}
- run_export=${norm_export}
- fi
- if [ ${run_train} = 'null' ]; then
- continue
- fi
- set_config=$(func_set_params "${train_config_key}" "${train_config_value}")
- set_autocast=$(func_set_params "${autocast_key}" "${autocast}")
- set_epoch=$(func_set_params "${epoch_key}" "${epoch_value}")
- set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
- set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
- set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
- set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${train_use_gpu}")
- # If length of ips >= 15, then it is seen as multi-machine.
- # 15 is the min length of ips info for multi-machine: 0.0.0.0,0.0.0.0
- if [ ${#ips} -le 15 ]; then
- save_dir="${OUT_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
- nodes=1
- else
- IFS=','
- ips_array=(${ips})
- IFS='|'
- nodes=${#ips_array[@]}
- save_dir="${OUT_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}"
- fi
- log_path="${OUT_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}.log"
- # Load pretrained model from norm training if current trainer is pact or fpgm trainer.
- if ([ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]) && [ ${nodes} -le 1 ]; then
- set_pretrain="${load_norm_train_model}"
- fi
- set_save_model=$(func_set_params "${save_model_key}" "${save_dir}")
- if [ ${#gpu} -le 2 ]; then # Train with cpu or single gpu
- cmd="${python} ${run_train} ${set_config} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config}"
- elif [ ${#ips} -le 15 ]; then # Train with multi-gpu
- cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_config} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config}"
- else # Train with multi-machine
- cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_config} ${set_use_gpu} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config}"
- fi
- echo ${cmd}
- # Run train
- run_command "${cmd}" "${log_path}"
- status_check $? "${cmd}" "${status_log}" "${model_name}"
- if [[ "${cmd}" == *'paddle.distributed.launch'* ]]; then
- cat log/workerlog.0 >> ${log_path}
- fi
- set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_dir}/${train_model_name}/model.pdparams")
- # Save norm trained models to set pretrain for pact training and fpgm training
- if [ ${trainer} = ${trainer_norm} ] && [ ${nodes} -le 1 ]; then
- load_norm_train_model=${set_eval_pretrain}
- fi
- # Run evaluation
- if [ ${eval_py} != 'null' ]; then
- log_path="${OUT_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}_eval.log"
- set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}")
- eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}"
- run_command "${eval_cmd}" "${log_path}"
- status_check $? "${eval_cmd}" "${status_log}" "${model_name}"
- fi
- # Run export model
- if [ ${run_export} != 'null' ]; then
- log_path="${OUT_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}_export.log"
- save_infer_path="${save_dir}/static"
- set_export_weight=$(func_set_params "${export_weight}" "${save_dir}/${train_model_name}")
- set_export_shape=$(func_set_params "${export_shape_key}" "${export_shape_value}")
- set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}")
- export_cmd="${python} ${run_export} ${set_export_weight} ${set_save_infer_key} ${set_export_shape}"
- run_command "${export_cmd}" "${log_path}"
- status_check $? "${export_cmd}" "${status_log}" "${model_name}"
- # Run inference
- eval ${env}
- if [[ ${inference_dir} != 'null' ]] && [[ ${inference_dir} != '##' ]]; then
- infer_model_dir="${save_infer_path}/${inference_dir}"
- else
- infer_model_dir=${save_infer_path}
- fi
- func_inference "${python}" "${inference_py}" "${infer_model_dir}" "${OUT_PATH}" "${train_config_value}"
- eval "unset CUDA_VISIBLE_DEVICES"
- fi
- done # Done with: for trainer in ${trainer_list[*]}; do
- done # Done with: for autocast in ${autocast_list[*]}; do
- done # Done with: for gpu in ${gpu_list[*]}; do
- fi # End if [ ${MODE} = 'infer' ]; then
|