123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116 |
- #!/usr/bin/env python
- import os
- import random
- import numpy as np
- import paddle
- import paddlers
- from paddlers import transforms as T
- from config_utils import parse_args, build_objects, CfgNode
- def format_cfg(cfg, indent=0):
- s = ''
- if isinstance(cfg, dict):
- for i, (k, v) in enumerate(sorted(cfg.items())):
- s += ' ' * indent + str(k) + ': '
- if isinstance(v, (dict, list, CfgNode)):
- s += '\n' + format_cfg(v, indent=indent + 1)
- else:
- s += str(v)
- if i != len(cfg) - 1:
- s += '\n'
- elif isinstance(cfg, list):
- for i, v in enumerate(cfg):
- s += ' ' * indent + '- '
- if isinstance(v, (dict, list, CfgNode)):
- s += '\n' + format_cfg(v, indent=indent + 1)
- else:
- s += str(v)
- if i != len(cfg) - 1:
- s += '\n'
- elif isinstance(cfg, CfgNode):
- s += ' ' * indent + f"type: {cfg.type}" + '\n'
- s += ' ' * indent + f"module: {cfg.module}" + '\n'
- s += ' ' * indent + 'args: \n' + format_cfg(cfg.args, indent + 1)
- return s
- if __name__ == '__main__':
- CfgNode.set_context(globals())
- cfg = parse_args()
- print(format_cfg(cfg))
- if cfg['seed'] is not None:
- random.seed(cfg['seed'])
- np.random.seed(cfg['seed'])
- paddle.seed(cfg['seed'])
- # Automatically download data
- if cfg['download_on']:
- paddlers.utils.download_and_decompress(
- cfg['download_url'], path=cfg['download_path'])
- if not isinstance(cfg['datasets']['eval'].args, dict):
- raise TypeError("args of eval dataset must be a dict!")
- if cfg['datasets']['eval'].args.get('transforms', None) is not None:
- raise ValueError(
- "Found key 'transforms' in args of eval dataset and the value is not None."
- )
- eval_transforms = T.Compose(build_objects(cfg['transforms']['eval'], mod=T))
- # Inplace modification
- cfg['datasets']['eval'].args['transforms'] = eval_transforms
- eval_dataset = build_objects(cfg['datasets']['eval'], mod=paddlers.datasets)
- if cfg['cmd'] == 'train':
- if not isinstance(cfg['datasets']['train'].args, dict):
- raise TypeError("args of train dataset must be a dict!")
- if cfg['datasets']['train'].args.get('transforms', None) is not None:
- raise ValueError(
- "Found key 'transforms' in args of train dataset and the value is not None."
- )
- train_transforms = T.Compose(
- build_objects(
- cfg['transforms']['train'], mod=T))
- # Inplace modification
- cfg['datasets']['train'].args['transforms'] = train_transforms
- train_dataset = build_objects(
- cfg['datasets']['train'], mod=paddlers.datasets)
- model = build_objects(
- cfg['model'], mod=getattr(paddlers.tasks, cfg['task']))
- if cfg['optimizer']:
- if len(cfg['optimizer'].args) == 0:
- cfg['optimizer'].args = {}
- if not isinstance(cfg['optimizer'].args, dict):
- raise TypeError("args of optimizer must be a dict!")
- if cfg['optimizer'].args.get('parameters', None) is not None:
- raise ValueError(
- "Found key 'parameters' in args of optimizer and the value is not None."
- )
- cfg['optimizer'].args['parameters'] = model.net.parameters()
- optimizer = build_objects(cfg['optimizer'], mod=paddle.optimizer)
- else:
- optimizer = None
- model.train(
- num_epochs=cfg['num_epochs'],
- train_dataset=train_dataset,
- train_batch_size=cfg['train_batch_size'],
- eval_dataset=eval_dataset,
- optimizer=optimizer,
- save_interval_epochs=cfg['save_interval_epochs'],
- log_interval_steps=cfg['log_interval_steps'],
- save_dir=cfg['save_dir'],
- learning_rate=cfg['learning_rate'],
- early_stop=cfg['early_stop'],
- early_stop_patience=cfg['early_stop_patience'],
- use_vdl=cfg['use_vdl'],
- resume_checkpoint=cfg['resume_checkpoint'] or None,
- **cfg['train'])
- elif cfg['cmd'] == 'eval':
- model = paddlers.tasks.load_model(cfg['resume_checkpoint'])
- res = model.evaluate(eval_dataset)
- print(res)
|