unet_multi_channel.py 1.6 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455
  1. import os
  2. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  3. import paddlers as pdrs
  4. from paddlers import transforms as T
  5. # 下载和解压多光谱地块分类数据集
  6. dataset = 'https://paddleseg.bj.bcebos.com/dataset/remote_sensing_seg.zip'
  7. pdrs.utils.download_and_decompress(dataset, path='./data')
  8. # 定义训练和验证时的transforms
  9. channel = 10
  10. train_transforms = T.Compose([
  11. T.Resize(target_size=512),
  12. T.RandomHorizontalFlip(),
  13. T.Normalize(
  14. mean=[0.5] * channel, std=[0.5] * channel),
  15. ])
  16. eval_transforms = T.Compose([
  17. T.Resize(target_size=512),
  18. T.Normalize(
  19. mean=[0.5] * channel, std=[0.5] * channel),
  20. ])
  21. # 定义训练和验证所用的数据集
  22. train_dataset = pdrs.datasets.SegDataset(
  23. data_dir='./data/remote_sensing_seg',
  24. file_list='./data/remote_sensing_seg/train.txt',
  25. label_list='./data/remote_sensing_seg/labels.txt',
  26. transforms=train_transforms,
  27. num_workers=0,
  28. shuffle=True)
  29. eval_dataset = pdrs.datasets.SegDataset(
  30. data_dir='./data/remote_sensing_seg',
  31. file_list='./data/remote_sensing_seg/val.txt',
  32. label_list='./data/remote_sensing_seg/labels.txt',
  33. transforms=eval_transforms,
  34. num_workers=0,
  35. shuffle=False)
  36. # 初始化模型,并进行训练
  37. # 可使用VisualDL查看训练指标
  38. num_classes = len(train_dataset.labels)
  39. model = pdrs.tasks.UNet(input_channel=channel, num_classes=num_classes)
  40. model.train(
  41. num_epochs=20,
  42. train_dataset=train_dataset,
  43. train_batch_size=4,
  44. eval_dataset=eval_dataset,
  45. learning_rate=0.01,
  46. save_dir='output/unet',
  47. use_vdl=True)