12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455 |
- import os
- os.environ['CUDA_VISIBLE_DEVICES'] = '0'
- import paddlers as pdrs
- from paddlers import transforms as T
- # 下载和解压多光谱地块分类数据集
- dataset = 'https://paddleseg.bj.bcebos.com/dataset/remote_sensing_seg.zip'
- pdrs.utils.download_and_decompress(dataset, path='./data')
- # 定义训练和验证时的transforms
- channel = 10
- train_transforms = T.Compose([
- T.Resize(target_size=512),
- T.RandomHorizontalFlip(),
- T.Normalize(
- mean=[0.5] * channel, std=[0.5] * channel),
- ])
- eval_transforms = T.Compose([
- T.Resize(target_size=512),
- T.Normalize(
- mean=[0.5] * channel, std=[0.5] * channel),
- ])
- # 定义训练和验证所用的数据集
- train_dataset = pdrs.datasets.SegDataset(
- data_dir='./data/remote_sensing_seg',
- file_list='./data/remote_sensing_seg/train.txt',
- label_list='./data/remote_sensing_seg/labels.txt',
- transforms=train_transforms,
- num_workers=0,
- shuffle=True)
- eval_dataset = pdrs.datasets.SegDataset(
- data_dir='./data/remote_sensing_seg',
- file_list='./data/remote_sensing_seg/val.txt',
- label_list='./data/remote_sensing_seg/labels.txt',
- transforms=eval_transforms,
- num_workers=0,
- shuffle=False)
- # 初始化模型,并进行训练
- # 可使用VisualDL查看训练指标
- num_classes = len(train_dataset.labels)
- model = pdrs.tasks.UNet(input_channel=channel, num_classes=num_classes)
- model.train(
- num_epochs=20,
- train_dataset=train_dataset,
- train_batch_size=4,
- eval_dataset=eval_dataset,
- learning_rate=0.01,
- save_dir='output/unet',
- use_vdl=True)
|