12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import math
- import os
- import os.path as osp
- from collections import OrderedDict
- from operator import attrgetter
- import cv2
- import numpy as np
- import paddle
- import paddle.nn.functional as F
- from paddle.static import InputSpec
- import paddlers
- import paddlers.models.ppseg as ppseg
- import paddlers.rs_models.cd as cmcd
- import paddlers.utils.logging as logging
- from paddlers.models import seg_losses
- from paddlers.transforms import Resize, decode_image
- from paddlers.utils import get_single_card_bs
- from paddlers.utils.checkpoint import seg_pretrain_weights_dict
- from .base import BaseModel
- from .utils import seg_metrics as metrics
- from .utils.infer_nets import InferCDNet
- __all__ = [
- "CDNet", "FCEarlyFusion", "FCSiamConc", "FCSiamDiff", "STANet", "BIT",
- "SNUNet", "DSIFN", "DSAMNet", "ChangeStar", "ChangeFormer"
- ]
- class BaseChangeDetector(BaseModel):
- def __init__(self,
- model_name,
- num_classes=2,
- use_mixed_loss=False,
- losses=None,
- **params):
- self.init_params = locals()
- if 'with_net' in self.init_params:
- del self.init_params['with_net']
- super(BaseChangeDetector, self).__init__('change_detector')
- if model_name not in __all__:
- raise ValueError("ERROR: There is no model named {}.".format(
- model_name))
- self.model_name = model_name
- self.num_classes = num_classes
- self.use_mixed_loss = use_mixed_loss
- self.losses = losses
- self.labels = None
- if params.get('with_net', True):
- params.pop('with_net', None)
- self.net = self.build_net(**params)
- self.find_unused_parameters = True
- def build_net(self, **params):
- # TODO: add other model
- net = cmcd.__dict__[self.model_name](num_classes=self.num_classes,
- **params)
- return net
- def _build_inference_net(self):
- infer_net = InferCDNet(self.net)
- infer_net.eval()
- return infer_net
- def _fix_transforms_shape(self, image_shape):
- if hasattr(self, 'test_transforms'):
- if self.test_transforms is not None:
- has_resize_op = False
- resize_op_idx = -1
- normalize_op_idx = len(self.test_transforms.transforms)
- for idx, op in enumerate(self.test_transforms.transforms):
- name = op.__class__.__name__
- if name == 'Normalize':
- normalize_op_idx = idx
- if 'Resize' in name:
- has_resize_op = True
- resize_op_idx = idx
- if not has_resize_op:
- self.test_transforms.transforms.insert(
- normalize_op_idx, Resize(target_size=image_shape))
- else:
- self.test_transforms.transforms[resize_op_idx] = Resize(
- target_size=image_shape)
- def _get_test_inputs(self, image_shape):
- if image_shape is not None:
- if len(image_shape) == 2:
- image_shape = [1, 3] + image_shape
- self._fix_transforms_shape(image_shape[-2:])
- else:
- image_shape = [None, 3, -1, -1]
- self.fixed_input_shape = image_shape
- return [
- InputSpec(
- shape=image_shape, name='image', dtype='float32'), InputSpec(
- shape=image_shape, name='image2', dtype='float32')
- ]
- def run(self, net, inputs, mode):
- net_out = net(inputs[0], inputs[1])
- logit = net_out[0]
- outputs = OrderedDict()
- if mode == 'test':
- origin_shape = inputs[2]
- if self.status == 'Infer':
- label_map_list, score_map_list = self._postprocess(
- net_out, origin_shape, transforms=inputs[3])
- else:
- logit_list = self._postprocess(
- logit, origin_shape, transforms=inputs[3])
- label_map_list = []
- score_map_list = []
- for logit in logit_list:
- logit = paddle.transpose(logit, perm=[0, 2, 3, 1]) # NHWC
- label_map_list.append(
- paddle.argmax(
- logit, axis=-1, keepdim=False, dtype='int32')
- .squeeze().numpy())
- score_map_list.append(
- F.softmax(
- logit, axis=-1).squeeze().numpy().astype('float32'))
- outputs['label_map'] = label_map_list
- outputs['score_map'] = score_map_list
- if mode == 'eval':
- if self.status == 'Infer':
- pred = paddle.unsqueeze(net_out[0], axis=1) # NCHW
- else:
- pred = paddle.argmax(logit, axis=1, keepdim=True, dtype='int32')
- label = inputs[2]
- if label.ndim == 3:
- paddle.unsqueeze_(label, axis=1)
- if label.ndim != 4:
- raise ValueError("Expected label.ndim == 4 but got {}".format(
- label.ndim))
- origin_shape = [label.shape[-2:]]
- pred = self._postprocess(
- pred, origin_shape, transforms=inputs[3])[0] # NCHW
- intersect_area, pred_area, label_area = ppseg.utils.metrics.calculate_area(
- pred, label, self.num_classes)
- outputs['intersect_area'] = intersect_area
- outputs['pred_area'] = pred_area
- outputs['label_area'] = label_area
- outputs['conf_mat'] = metrics.confusion_matrix(pred, label,
- self.num_classes)
- if mode == 'train':
- if hasattr(net, 'USE_MULTITASK_DECODER') and \
- net.USE_MULTITASK_DECODER is True:
- # CD+Seg
- if len(inputs) != 5:
- raise ValueError(
- "Cannot perform loss computation with {} inputs.".
- format(len(inputs)))
- labels_list = [
- inputs[2 + idx]
- for idx in map(attrgetter('value'), net.OUT_TYPES)
- ]
- loss_list = metrics.multitask_loss_computation(
- logits_list=net_out,
- labels_list=labels_list,
- losses=self.losses)
- else:
- loss_list = metrics.loss_computation(
- logits_list=net_out, labels=inputs[2], losses=self.losses)
- loss = sum(loss_list)
- outputs['loss'] = loss
- return outputs
- def default_loss(self):
- if isinstance(self.use_mixed_loss, bool):
- if self.use_mixed_loss:
- losses = [
- seg_losses.CrossEntropyLoss(),
- seg_losses.LovaszSoftmaxLoss()
- ]
- coef = [.8, .2]
- loss_type = [seg_losses.MixedLoss(losses=losses, coef=coef), ]
- else:
- loss_type = [seg_losses.CrossEntropyLoss()]
- else:
- losses, coef = list(zip(*self.use_mixed_loss))
- if not set(losses).issubset(
- ['CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss']):
- raise ValueError(
- "Only 'CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss' are supported."
- )
- losses = [getattr(seg_losses, loss)() for loss in losses]
- loss_type = [seg_losses.MixedLoss(losses=losses, coef=list(coef))]
- loss_coef = [1.0]
- losses = {'types': loss_type, 'coef': loss_coef}
- return losses
- def default_optimizer(self,
- parameters,
- learning_rate,
- num_epochs,
- num_steps_each_epoch,
- lr_decay_power=0.9):
- decay_step = num_epochs * num_steps_each_epoch
- lr_scheduler = paddle.optimizer.lr.PolynomialDecay(
- learning_rate, decay_step, end_lr=0, power=lr_decay_power)
- optimizer = paddle.optimizer.Momentum(
- learning_rate=lr_scheduler,
- parameters=parameters,
- momentum=0.9,
- weight_decay=4e-5)
- return optimizer
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=2,
- eval_dataset=None,
- optimizer=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights=None,
- learning_rate=0.01,
- lr_decay_power=0.9,
- early_stop=False,
- early_stop_patience=5,
- use_vdl=True,
- resume_checkpoint=None):
- """
- Train the model.
- Args:
- num_epochs (int): Number of epochs.
- train_dataset (paddlers.datasets.CDDataset): Training dataset.
- train_batch_size (int, optional): Total batch size among all cards used in
- training. Defaults to 2.
- eval_dataset (paddlers.datasets.CDDataset|None, optional): Evaluation dataset.
- If None, the model will not be evaluated during training process.
- Defaults to None.
- optimizer (paddle.optimizer.Optimizer|None, optional): Optimizer used in
- training. If None, a default optimizer will be used. Defaults to None.
- save_interval_epochs (int, optional): Epoch interval for saving the model.
- Defaults to 1.
- log_interval_steps (int, optional): Step interval for printing training
- information. Defaults to 2.
- save_dir (str, optional): Directory to save the model. Defaults to 'output'.
- pretrain_weights (str|None, optional): None or name/path of pretrained
- weights. If None, no pretrained weights will be loaded. Defaults to None.
- learning_rate (float, optional): Learning rate for training. Defaults to .01.
- lr_decay_power (float, optional): Learning decay power. Defaults to .9.
- early_stop (bool, optional): Whether to adopt early stop strategy. Defaults
- to False.
- early_stop_patience (int, optional): Early stop patience. Defaults to 5.
- use_vdl (bool, optional): Whether to use VisualDL to monitor the training
- process. Defaults to True.
- resume_checkpoint (str|None, optional): Path of the checkpoint to resume
- training from. If None, no training checkpoint will be resumed. At most
- Aone of `resume_checkpoint` and `pretrain_weights` can be set simultaneously.
- Defaults to None.
- """
- if self.status == 'Infer':
- logging.error(
- "Exported inference model does not support training.",
- exit=True)
- if pretrain_weights is not None and resume_checkpoint is not None:
- logging.error(
- "pretrain_weights and resume_checkpoint cannot be set simultaneously.",
- exit=True)
- self.labels = train_dataset.labels
- if self.losses is None:
- self.losses = self.default_loss()
- if optimizer is None:
- num_steps_each_epoch = train_dataset.num_samples // train_batch_size
- self.optimizer = self.default_optimizer(
- self.net.parameters(), learning_rate, num_epochs,
- num_steps_each_epoch, lr_decay_power)
- else:
- self.optimizer = optimizer
- if pretrain_weights is not None and not osp.exists(pretrain_weights):
- if pretrain_weights not in seg_pretrain_weights_dict[
- self.model_name]:
- logging.warning(
- "Path of pretrain_weights('{}') does not exist!".format(
- pretrain_weights))
- logging.warning("Pretrain_weights is forcibly set to '{}'. "
- "If don't want to use pretrain weights, "
- "set pretrain_weights to be None.".format(
- seg_pretrain_weights_dict[self.model_name][
- 0]))
- pretrain_weights = seg_pretrain_weights_dict[self.model_name][0]
- elif pretrain_weights is not None and osp.exists(pretrain_weights):
- if osp.splitext(pretrain_weights)[-1] != '.pdparams':
- logging.error(
- "Invalid pretrain weights. Please specify a '.pdparams' file.",
- exit=True)
- pretrained_dir = osp.join(save_dir, 'pretrain')
- is_backbone_weights = pretrain_weights == 'IMAGENET'
- self.net_initialize(
- pretrain_weights=pretrain_weights,
- save_dir=pretrained_dir,
- resume_checkpoint=resume_checkpoint,
- is_backbone_weights=is_backbone_weights)
- self.train_loop(
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience,
- use_vdl=use_vdl)
- def quant_aware_train(self,
- num_epochs,
- train_dataset,
- train_batch_size=2,
- eval_dataset=None,
- optimizer=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- learning_rate=0.0001,
- lr_decay_power=0.9,
- early_stop=False,
- early_stop_patience=5,
- use_vdl=True,
- resume_checkpoint=None,
- quant_config=None):
- """
- Quantization-aware training.
- Args:
- num_epochs (int): Number of epochs.
- train_dataset (paddlers.datasets.CDDataset): Training dataset.
- train_batch_size (int, optional): Total batch size among all cards used in
- training. Defaults to 2.
- eval_dataset (paddlers.datasets.CDDataset, optional): Evaluation dataset.
- If None, the model will not be evaluated during training process.
- Defaults to None.
- optimizer (paddle.optimizer.Optimizer|None, optional): Optimizer used in
- training. If None, a default optimizer will be used. Defaults to None.
- save_interval_epochs (int, optional): Epoch interval for saving the model.
- Defaults to 1.
- log_interval_steps (int, optional): Step interval for printing training
- information. Defaults to 2.
- save_dir (str, optional): Directory to save the model. Defaults to 'output'.
- learning_rate (float, optional): Learning rate for training.
- Defaults to .0001.
- lr_decay_power (float, optional): Learning decay power. Defaults to .9.
- early_stop (bool, optional): Whether to adopt early stop strategy.
- Defaults to False.
- early_stop_patience (int, optional): Early stop patience. Defaults to 5.
- use_vdl (bool, optional): Whether to use VisualDL to monitor the training
- process. Defaults to True.
- quant_config (dict|None, optional): Quantization configuration. If None,
- a default rule of thumb configuration will be used. Defaults to None.
- resume_checkpoint (str|None, optional): Path of the checkpoint to resume
- quantization-aware training from. If None, no training checkpoint will
- be resumed. Defaults to None.
- """
- self._prepare_qat(quant_config)
- self.train(
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- optimizer=optimizer,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=None,
- learning_rate=learning_rate,
- lr_decay_power=lr_decay_power,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience,
- use_vdl=use_vdl,
- resume_checkpoint=resume_checkpoint)
- def evaluate(self, eval_dataset, batch_size=1, return_details=False):
- """
- Evaluate the model.
- Args:
- eval_dataset (paddlers.datasets.CDDataset): Evaluation dataset.
- batch_size (int, optional): Total batch size among all cards used for
- evaluation. Defaults to 1.
- return_details (bool, optional): Whether to return evaluation details.
- Defaults to False.
- Returns:
- If `return_details` is False, return collections.OrderedDict with
- key-value pairs:
- For binary change detection (number of classes == 2), the key-value
- pairs are like:
- {"iou": `intersection over union for the change class`,
- "f1": `F1 score for the change class`,
- "oacc": `overall accuracy`,
- "kappa": ` kappa coefficient`}.
- For multi-class change detection (number of classes > 2), the key-value
- pairs are like:
- {"miou": `mean intersection over union`,
- "category_iou": `category-wise mean intersection over union`,
- "oacc": `overall accuracy`,
- "category_acc": `category-wise accuracy`,
- "kappa": ` kappa coefficient`,
- "category_F1-score": `F1 score`}.
- """
- self._check_transforms(eval_dataset.transforms, 'eval')
- self.net.eval()
- nranks = paddle.distributed.get_world_size()
- local_rank = paddle.distributed.get_rank()
- if nranks > 1:
- # Initialize parallel environment if not done.
- if not (paddle.distributed.parallel.parallel_helper.
- _is_parallel_ctx_initialized()):
- paddle.distributed.init_parallel_env()
- batch_size_each_card = get_single_card_bs(batch_size)
- if batch_size_each_card > 1:
- batch_size_each_card = 1
- batch_size = batch_size_each_card * paddlers.env_info['num']
- logging.warning(
- "ChangeDetector only supports batch_size=1 for each gpu/cpu card " \
- "during evaluation, so batch_size " \
- "is forcibly set to {}.".format(batch_size)
- )
- self.eval_data_loader = self.build_data_loader(
- eval_dataset, batch_size=batch_size, mode='eval')
- intersect_area_all = 0
- pred_area_all = 0
- label_area_all = 0
- conf_mat_all = []
- logging.info(
- "Start to evaluate(total_samples={}, total_steps={})...".format(
- eval_dataset.num_samples,
- math.ceil(eval_dataset.num_samples * 1.0 / batch_size)))
- with paddle.no_grad():
- for step, data in enumerate(self.eval_data_loader):
- data.append(eval_dataset.transforms.transforms)
- outputs = self.run(self.net, data, 'eval')
- pred_area = outputs['pred_area']
- label_area = outputs['label_area']
- intersect_area = outputs['intersect_area']
- conf_mat = outputs['conf_mat']
- # Gather from all ranks
- if nranks > 1:
- intersect_area_list = []
- pred_area_list = []
- label_area_list = []
- conf_mat_list = []
- paddle.distributed.all_gather(intersect_area_list,
- intersect_area)
- paddle.distributed.all_gather(pred_area_list, pred_area)
- paddle.distributed.all_gather(label_area_list, label_area)
- paddle.distributed.all_gather(conf_mat_list, conf_mat)
- # Some image has been evaluated and should be eliminated in last iter
- if (step + 1) * nranks > len(eval_dataset):
- valid = len(eval_dataset) - step * nranks
- intersect_area_list = intersect_area_list[:valid]
- pred_area_list = pred_area_list[:valid]
- label_area_list = label_area_list[:valid]
- conf_mat_list = conf_mat_list[:valid]
- intersect_area_all += sum(intersect_area_list)
- pred_area_all += sum(pred_area_list)
- label_area_all += sum(label_area_list)
- conf_mat_all.extend(conf_mat_list)
- else:
- intersect_area_all = intersect_area_all + intersect_area
- pred_area_all = pred_area_all + pred_area
- label_area_all = label_area_all + label_area
- conf_mat_all.append(conf_mat)
- class_iou, miou = ppseg.utils.metrics.mean_iou(
- intersect_area_all, pred_area_all, label_area_all)
- # TODO 确认是按oacc还是macc
- class_acc, oacc = ppseg.utils.metrics.accuracy(intersect_area_all,
- pred_area_all)
- kappa = ppseg.utils.metrics.kappa(intersect_area_all, pred_area_all,
- label_area_all)
- category_f1score = metrics.f1_score(intersect_area_all, pred_area_all,
- label_area_all)
- if len(class_acc) > 2:
- eval_metrics = OrderedDict(
- zip([
- 'miou', 'category_iou', 'oacc', 'category_acc', 'kappa',
- 'category_F1-score'
- ], [miou, class_iou, oacc, class_acc, kappa, category_f1score]))
- else:
- eval_metrics = OrderedDict(
- zip(['iou', 'f1', 'oacc', 'kappa'],
- [class_iou[1], category_f1score[1], oacc, kappa]))
- if return_details:
- conf_mat = sum(conf_mat_all)
- eval_details = {'confusion_matrix': conf_mat.tolist()}
- return eval_metrics, eval_details
- return eval_metrics
- def predict(self, img_file, transforms=None):
- """
- Do inference.
- Args:
- img_file (list[tuple] | tuple[str|np.ndarray]): Tuple of image paths or
- decoded image data for bi-temporal images, which also could constitute
- a list, meaning all image pairs to be predicted as a mini-batch.
- transforms (paddlers.transforms.Compose|None, optional): Transforms for
- inputs. If None, the transforms for evaluation process will be used.
- Defaults to None.
- Returns:
- If `img_file` is a tuple of string or np.array, the result is a dict with
- the following key-value pairs:
- label_map (np.ndarray): Predicted label map (HW).
- score_map (np.ndarray): Prediction score map (HWC).
- If `img_file` is a list, the result is a list composed of dicts with the
- above keys.
- """
- if transforms is None and not hasattr(self, 'test_transforms'):
- raise ValueError("transforms need to be defined, now is None.")
- if transforms is None:
- transforms = self.test_transforms
- if isinstance(img_file, tuple):
- if not len(img_file) == 2 and any(
- map(lambda obj: not isinstance(obj, (str, np.ndarray)),
- img_file)):
- raise TypeError
- images = [img_file]
- else:
- images = img_file
- batch_im1, batch_im2, batch_origin_shape = self._preprocess(
- images, transforms, self.model_type)
- self.net.eval()
- data = (batch_im1, batch_im2, batch_origin_shape, transforms.transforms)
- outputs = self.run(self.net, data, 'test')
- label_map_list = outputs['label_map']
- score_map_list = outputs['score_map']
- if isinstance(img_file, list):
- prediction = [{
- 'label_map': l,
- 'score_map': s
- } for l, s in zip(label_map_list, score_map_list)]
- else:
- prediction = {
- 'label_map': label_map_list[0],
- 'score_map': score_map_list[0]
- }
- return prediction
- def slider_predict(self,
- img_file,
- save_dir,
- block_size,
- overlap=36,
- transforms=None):
- """
- Do inference.
- Args:
- img_file (tuple[str]): Tuple of image paths.
- save_dir (str): Directory that contains saved geotiff file.
- block_size (list[int] | tuple[int] | int, optional): Size of block.
- overlap (list[int] | tuple[int] | int, optional): Overlap between two blocks.
- Defaults to 36.
- transforms (paddlers.transforms.Compose|None, optional): Transforms for inputs.
- If None, the transforms for evaluation process will be used. Defaults to None.
- """
- try:
- from osgeo import gdal
- except:
- import gdal
- if not isinstance(img_file, tuple) or len(img_file) != 2:
- raise ValueError("`img_file` must be a tuple of length 2.")
- if isinstance(block_size, int):
- block_size = (block_size, block_size)
- elif isinstance(block_size, (tuple, list)) and len(block_size) == 2:
- block_size = tuple(block_size)
- else:
- raise ValueError(
- "`block_size` must be a tuple/list of length 2 or an integer.")
- if isinstance(overlap, int):
- overlap = (overlap, overlap)
- elif isinstance(overlap, (tuple, list)) and len(overlap) == 2:
- overlap = tuple(overlap)
- else:
- raise ValueError(
- "`overlap` must be a tuple/list of length 2 or an integer.")
- src1_data = gdal.Open(img_file[0])
- src2_data = gdal.Open(img_file[1])
- width = src1_data.RasterXSize
- height = src1_data.RasterYSize
- bands = src1_data.RasterCount
- driver = gdal.GetDriverByName("GTiff")
- file_name = osp.splitext(osp.normpath(img_file[0]).split(os.sep)[-1])[
- 0] + ".tif"
- if not osp.exists(save_dir):
- os.makedirs(save_dir)
- save_file = osp.join(save_dir, file_name)
- dst_data = driver.Create(save_file, width, height, 1, gdal.GDT_Byte)
- dst_data.SetGeoTransform(src1_data.GetGeoTransform())
- dst_data.SetProjection(src1_data.GetProjection())
- band = dst_data.GetRasterBand(1)
- band.WriteArray(255 * np.ones((height, width), dtype="uint8"))
- step = np.array(block_size) - np.array(overlap)
- for yoff in range(0, height, step[1]):
- for xoff in range(0, width, step[0]):
- xsize, ysize = block_size
- if xoff + xsize > width:
- xsize = int(width - xoff)
- if yoff + ysize > height:
- ysize = int(height - yoff)
- im1 = src1_data.ReadAsArray(
- int(xoff), int(yoff), xsize, ysize).transpose((1, 2, 0))
- im2 = src2_data.ReadAsArray(
- int(xoff), int(yoff), xsize, ysize).transpose((1, 2, 0))
- # Fill
- h, w = im1.shape[:2]
- im1_fill = np.zeros(
- (block_size[1], block_size[0], bands), dtype=im1.dtype)
- im2_fill = im1_fill.copy()
- im1_fill[:h, :w, :] = im1
- im2_fill[:h, :w, :] = im2
- im_fill = (im1_fill, im2_fill)
- # Predict
- pred = self.predict(im_fill,
- transforms)["label_map"].astype("uint8")
- # Overlap
- rd_block = band.ReadAsArray(int(xoff), int(yoff), xsize, ysize)
- mask = (rd_block == pred[:h, :w]) | (rd_block == 255)
- temp = pred[:h, :w].copy()
- temp[mask == False] = 0
- band.WriteArray(temp, int(xoff), int(yoff))
- dst_data.FlushCache()
- dst_data = None
- print("GeoTiff saved in {}.".format(save_file))
- def _preprocess(self, images, transforms, to_tensor=True):
- self._check_transforms(transforms, 'test')
- batch_im1, batch_im2 = list(), list()
- batch_ori_shape = list()
- for im1, im2 in images:
- if isinstance(im1, str) or isinstance(im2, str):
- im1 = decode_image(im1, to_rgb=False)
- im2 = decode_image(im2, to_rgb=False)
- ori_shape = im1.shape[:2]
- # XXX: sample do not contain 'image_t1' and 'image_t2'.
- sample = {'image': im1, 'image2': im2}
- im1, im2 = transforms(sample)[:2]
- batch_im1.append(im1)
- batch_im2.append(im2)
- batch_ori_shape.append(ori_shape)
- if to_tensor:
- batch_im1 = paddle.to_tensor(batch_im1)
- batch_im2 = paddle.to_tensor(batch_im2)
- else:
- batch_im1 = np.asarray(batch_im1)
- batch_im2 = np.asarray(batch_im2)
- return batch_im1, batch_im2, batch_ori_shape
- @staticmethod
- def get_transforms_shape_info(batch_ori_shape, transforms):
- batch_restore_list = list()
- for ori_shape in batch_ori_shape:
- restore_list = list()
- h, w = ori_shape[0], ori_shape[1]
- for op in transforms:
- if op.__class__.__name__ == 'Resize':
- restore_list.append(('resize', (h, w)))
- h, w = op.target_size
- elif op.__class__.__name__ == 'ResizeByShort':
- restore_list.append(('resize', (h, w)))
- im_short_size = min(h, w)
- im_long_size = max(h, w)
- scale = float(op.short_size) / float(im_short_size)
- if 0 < op.max_size < np.round(scale * im_long_size):
- scale = float(op.max_size) / float(im_long_size)
- h = int(round(h * scale))
- w = int(round(w * scale))
- elif op.__class__.__name__ == 'ResizeByLong':
- restore_list.append(('resize', (h, w)))
- im_long_size = max(h, w)
- scale = float(op.long_size) / float(im_long_size)
- h = int(round(h * scale))
- w = int(round(w * scale))
- elif op.__class__.__name__ == 'Pad':
- if op.target_size:
- target_h, target_w = op.target_size
- else:
- target_h = int(
- (np.ceil(h / op.size_divisor) * op.size_divisor))
- target_w = int(
- (np.ceil(w / op.size_divisor) * op.size_divisor))
- if op.pad_mode == -1:
- offsets = op.offsets
- elif op.pad_mode == 0:
- offsets = [0, 0]
- elif op.pad_mode == 1:
- offsets = [(target_h - h) // 2, (target_w - w) // 2]
- else:
- offsets = [target_h - h, target_w - w]
- restore_list.append(('padding', (h, w), offsets))
- h, w = target_h, target_w
- batch_restore_list.append(restore_list)
- return batch_restore_list
- def _postprocess(self, batch_pred, batch_origin_shape, transforms):
- batch_restore_list = BaseChangeDetector.get_transforms_shape_info(
- batch_origin_shape, transforms)
- if isinstance(batch_pred, (tuple, list)) and self.status == 'Infer':
- return self._infer_postprocess(
- batch_label_map=batch_pred[0],
- batch_score_map=batch_pred[1],
- batch_restore_list=batch_restore_list)
- results = []
- if batch_pred.dtype == paddle.float32:
- mode = 'bilinear'
- else:
- mode = 'nearest'
- for pred, restore_list in zip(batch_pred, batch_restore_list):
- pred = paddle.unsqueeze(pred, axis=0)
- for item in restore_list[::-1]:
- h, w = item[1][0], item[1][1]
- if item[0] == 'resize':
- pred = F.interpolate(
- pred, (h, w), mode=mode, data_format='NCHW')
- elif item[0] == 'padding':
- x, y = item[2]
- pred = pred[:, :, y:y + h, x:x + w]
- else:
- pass
- results.append(pred)
- return results
- def _infer_postprocess(self, batch_label_map, batch_score_map,
- batch_restore_list):
- label_maps = []
- score_maps = []
- for label_map, score_map, restore_list in zip(
- batch_label_map, batch_score_map, batch_restore_list):
- if not isinstance(label_map, np.ndarray):
- label_map = paddle.unsqueeze(label_map, axis=[0, 3])
- score_map = paddle.unsqueeze(score_map, axis=0)
- for item in restore_list[::-1]:
- h, w = item[1][0], item[1][1]
- if item[0] == 'resize':
- if isinstance(label_map, np.ndarray):
- label_map = cv2.resize(
- label_map, (w, h), interpolation=cv2.INTER_NEAREST)
- score_map = cv2.resize(
- score_map, (w, h), interpolation=cv2.INTER_LINEAR)
- else:
- label_map = F.interpolate(
- label_map, (h, w),
- mode='nearest',
- data_format='NHWC')
- score_map = F.interpolate(
- score_map, (h, w),
- mode='bilinear',
- data_format='NHWC')
- elif item[0] == 'padding':
- x, y = item[2]
- if isinstance(label_map, np.ndarray):
- label_map = label_map[..., y:y + h, x:x + w]
- score_map = score_map[..., y:y + h, x:x + w]
- else:
- label_map = label_map[:, :, y:y + h, x:x + w]
- score_map = score_map[:, :, y:y + h, x:x + w]
- else:
- pass
- label_map = label_map.squeeze()
- score_map = score_map.squeeze()
- if not isinstance(label_map, np.ndarray):
- label_map = label_map.numpy()
- score_map = score_map.numpy()
- label_maps.append(label_map.squeeze())
- score_maps.append(score_map.squeeze())
- return label_maps, score_maps
- def _check_transforms(self, transforms, mode):
- super()._check_transforms(transforms, mode)
- if not isinstance(transforms.arrange,
- paddlers.transforms.ArrangeChangeDetector):
- raise TypeError(
- "`transforms.arrange` must be an ArrangeChangeDetector object.")
- def set_losses(self, losses, weights=None):
- if weights is None:
- weights = [1. for _ in range(len(losses))]
- self.losses = {'types': losses, 'coef': weights}
- class CDNet(BaseChangeDetector):
- def __init__(self,
- num_classes=2,
- use_mixed_loss=False,
- losses=None,
- in_channels=6,
- **params):
- params.update({'in_channels': in_channels})
- super(CDNet, self).__init__(
- model_name='CDNet',
- num_classes=num_classes,
- use_mixed_loss=use_mixed_loss,
- losses=losses,
- **params)
- class FCEarlyFusion(BaseChangeDetector):
- def __init__(self,
- num_classes=2,
- use_mixed_loss=False,
- losses=None,
- in_channels=6,
- use_dropout=False,
- **params):
- params.update({'in_channels': in_channels, 'use_dropout': use_dropout})
- super(FCEarlyFusion, self).__init__(
- model_name='FCEarlyFusion',
- num_classes=num_classes,
- use_mixed_loss=use_mixed_loss,
- losses=losses,
- **params)
- class FCSiamConc(BaseChangeDetector):
- def __init__(self,
- num_classes=2,
- use_mixed_loss=False,
- losses=None,
- in_channels=3,
- use_dropout=False,
- **params):
- params.update({'in_channels': in_channels, 'use_dropout': use_dropout})
- super(FCSiamConc, self).__init__(
- model_name='FCSiamConc',
- num_classes=num_classes,
- use_mixed_loss=use_mixed_loss,
- losses=losses,
- **params)
- class FCSiamDiff(BaseChangeDetector):
- def __init__(self,
- num_classes=2,
- use_mixed_loss=False,
- losses=None,
- in_channels=3,
- use_dropout=False,
- **params):
- params.update({'in_channels': in_channels, 'use_dropout': use_dropout})
- super(FCSiamDiff, self).__init__(
- model_name='FCSiamDiff',
- num_classes=num_classes,
- use_mixed_loss=use_mixed_loss,
- losses=losses,
- **params)
- class STANet(BaseChangeDetector):
- def __init__(self,
- num_classes=2,
- use_mixed_loss=False,
- losses=None,
- in_channels=3,
- att_type='BAM',
- ds_factor=1,
- **params):
- params.update({
- 'in_channels': in_channels,
- 'att_type': att_type,
- 'ds_factor': ds_factor
- })
- super(STANet, self).__init__(
- model_name='STANet',
- num_classes=num_classes,
- use_mixed_loss=use_mixed_loss,
- losses=losses,
- **params)
- class BIT(BaseChangeDetector):
- def __init__(self,
- num_classes=2,
- use_mixed_loss=False,
- losses=None,
- in_channels=3,
- backbone='resnet18',
- n_stages=4,
- use_tokenizer=True,
- token_len=4,
- pool_mode='max',
- pool_size=2,
- enc_with_pos=True,
- enc_depth=1,
- enc_head_dim=64,
- dec_depth=8,
- dec_head_dim=8,
- **params):
- params.update({
- 'in_channels': in_channels,
- 'backbone': backbone,
- 'n_stages': n_stages,
- 'use_tokenizer': use_tokenizer,
- 'token_len': token_len,
- 'pool_mode': pool_mode,
- 'pool_size': pool_size,
- 'enc_with_pos': enc_with_pos,
- 'enc_depth': enc_depth,
- 'enc_head_dim': enc_head_dim,
- 'dec_depth': dec_depth,
- 'dec_head_dim': dec_head_dim
- })
- super(BIT, self).__init__(
- model_name='BIT',
- num_classes=num_classes,
- use_mixed_loss=use_mixed_loss,
- losses=losses,
- **params)
- class SNUNet(BaseChangeDetector):
- def __init__(self,
- num_classes=2,
- use_mixed_loss=False,
- losses=None,
- in_channels=3,
- width=32,
- **params):
- params.update({'in_channels': in_channels, 'width': width})
- super(SNUNet, self).__init__(
- model_name='SNUNet',
- num_classes=num_classes,
- use_mixed_loss=use_mixed_loss,
- losses=losses,
- **params)
- class DSIFN(BaseChangeDetector):
- def __init__(self,
- num_classes=2,
- use_mixed_loss=False,
- losses=None,
- use_dropout=False,
- **params):
- params.update({'use_dropout': use_dropout})
- super(DSIFN, self).__init__(
- model_name='DSIFN',
- num_classes=num_classes,
- use_mixed_loss=use_mixed_loss,
- losses=losses,
- **params)
- def default_loss(self):
- if self.use_mixed_loss is False:
- return {
- # XXX: make sure the shallow copy works correctly here.
- 'types': [seg_losses.CrossEntropyLoss()] * 5,
- 'coef': [1.0] * 5
- }
- else:
- raise ValueError(
- f"Currently `use_mixed_loss` must be set to False for {self.__class__}"
- )
- class DSAMNet(BaseChangeDetector):
- def __init__(self,
- num_classes=2,
- use_mixed_loss=False,
- losses=None,
- in_channels=3,
- ca_ratio=8,
- sa_kernel=7,
- **params):
- params.update({
- 'in_channels': in_channels,
- 'ca_ratio': ca_ratio,
- 'sa_kernel': sa_kernel
- })
- super(DSAMNet, self).__init__(
- model_name='DSAMNet',
- num_classes=num_classes,
- use_mixed_loss=use_mixed_loss,
- losses=losses,
- **params)
- def default_loss(self):
- if self.use_mixed_loss is False:
- return {
- 'types': [
- seg_losses.CrossEntropyLoss(), seg_losses.DiceLoss(),
- seg_losses.DiceLoss()
- ],
- 'coef': [1.0, 0.05, 0.05]
- }
- else:
- raise ValueError(
- f"Currently `use_mixed_loss` must be set to False for {self.__class__}"
- )
- class ChangeStar(BaseChangeDetector):
- def __init__(self,
- num_classes=2,
- use_mixed_loss=False,
- losses=None,
- mid_channels=256,
- inner_channels=16,
- num_convs=4,
- scale_factor=4.0,
- **params):
- params.update({
- 'mid_channels': mid_channels,
- 'inner_channels': inner_channels,
- 'num_convs': num_convs,
- 'scale_factor': scale_factor
- })
- super(ChangeStar, self).__init__(
- model_name='ChangeStar',
- num_classes=num_classes,
- use_mixed_loss=use_mixed_loss,
- losses=losses,
- **params)
- def default_loss(self):
- if self.use_mixed_loss is False:
- return {
- # XXX: make sure the shallow copy works correctly here.
- 'types': [seglosses.CrossEntropyLoss()] * 4,
- 'coef': [1.0] * 4
- }
- else:
- raise ValueError(
- f"Currently `use_mixed_loss` must be set to False for {self.__class__}"
- )
- class ChangeFormer(BaseChangeDetector):
- def __init__(self,
- in_channels=3,
- num_classes=2,
- decoder_softmax=False,
- embed_dim=256,
- use_mixed_loss=False,
- **params):
- params.update({
- 'in_channels': in_channels,
- 'embed_dim': embed_dim,
- 'decoder_softmax': decoder_softmax
- })
- super(ChangeFormer, self).__init__(
- model_name='ChangeFormer',
- num_classes=num_classes,
- use_mixed_loss=use_mixed_loss,
- **params)
|