12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364 |
- import os
- import paddlers as pdrs
- from paddlers import transforms as T
- # download dataset
- data_dir = 'sar_ship_1'
- if not os.path.exists(data_dir):
- dataset_url = 'https://paddleseg.bj.bcebos.com/dataset/sar_ship_1.tar.gz'
- pdrs.utils.download_and_decompress(dataset_url, path='./')
- # define transforms
- train_transforms = T.Compose([
- T.RandomDistort(),
- T.RandomExpand(im_padding_value=[123.675, 116.28, 103.53]),
- T.RandomCrop(),
- T.RandomHorizontalFlip(),
- T.BatchRandomResize(
- target_sizes=[320, 352, 384, 416, 448, 480, 512, 544, 576, 608],
- interp='RANDOM'),
- T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
- ])
- eval_transforms = T.Compose([
- T.Resize(
- target_size=608, interp='CUBIC'), T.Normalize(
- mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
- ])
- # define dataset
- train_file_list = os.path.join(data_dir, 'train.txt')
- val_file_list = os.path.join(data_dir, 'valid.txt')
- label_file_list = os.path.join(data_dir, 'labels.txt')
- train_dataset = pdrs.datasets.VOCDetection(
- data_dir=data_dir,
- file_list=train_file_list,
- label_list=label_file_list,
- transforms=train_transforms,
- shuffle=True)
- eval_dataset = pdrs.datasets.VOCDetection(
- data_dir=data_dir,
- file_list=train_file_list,
- label_list=label_file_list,
- transforms=eval_transforms,
- shuffle=False)
- # define models
- num_classes = len(train_dataset.labels)
- model = pdrs.tasks.det.FasterRCNN(num_classes=num_classes)
- # train
- model.train(
- num_epochs=60,
- train_dataset=train_dataset,
- train_batch_size=2,
- eval_dataset=eval_dataset,
- pretrain_weights='COCO',
- learning_rate=0.005 / 12,
- warmup_steps=10,
- warmup_start_lr=0.0,
- save_interval_epochs=5,
- lr_decay_epochs=[20, 40],
- save_dir='output/faster_rcnn_sar_ship',
- use_vdl=True)
|