1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import copy
- import numpy as np
- import paddlers.transforms as T
- from testing_utils import CpuCommonTest
- from data import build_input_from_file
- __all__ = ['TestMatchHistograms', 'TestMatchByRegression']
- def calc_err(a, b):
- a = a.astype('float64')
- b = b.astype('float64')
- return np.abs(a - b).mean()
- class TestMatchHistograms(CpuCommonTest):
- def setUp(self):
- self.inputs = [
- build_input_from_file(
- "data/ssmt/test_mixed_binary.txt", prefix="./data/ssmt")
- ]
- def test_output_shape(self):
- decoder = T.DecodeImg()
- for input in copy.deepcopy(self.inputs):
- for sample in input:
- sample = decoder(sample)
- im_out = T.functions.match_histograms(sample['image2'],
- sample['image'])
- self.check_output_equal(im_out.shape, sample['image2'].shape)
- self.assertEqual(im_out.dtype, sample['image2'].dtype)
- im_out = T.functions.match_histograms(sample['image'],
- sample['image2'])
- self.check_output_equal(im_out.shape, sample['image'].shape)
- self.assertEqual(im_out.dtype, sample['image'].dtype)
- class TestMatchByRegression(CpuCommonTest):
- def setUp(self):
- self.inputs = [
- build_input_from_file(
- "data/ssmt/test_mixed_binary.txt", prefix="./data/ssmt")
- ]
- def test_output_shape(self):
- decoder = T.DecodeImg()
- for input in copy.deepcopy(self.inputs):
- for sample in input:
- sample = decoder(sample)
- im_out = T.functions.match_by_regression(sample['image2'],
- sample['image'])
- self.check_output_equal(im_out.shape, sample['image2'].shape)
- self.assertEqual(im_out.dtype, sample['image2'].dtype)
- err1 = calc_err(sample['image'], sample['image2'])
- err2 = calc_err(sample['image'], im_out)
- self.assertLessEqual(err2, err1)
- im_out = T.functions.match_by_regression(sample['image'],
- sample['image2'])
- self.check_output_equal(im_out.shape, sample['image'].shape)
- self.assertEqual(im_out.dtype, sample['image'].dtype)
- err1 = calc_err(sample['image'], sample['image2'])
- err2 = calc_err(im_out, sample['image2'])
- self.assertLessEqual(err2, err1)
|