123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- #!/usr/bin/env python
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # Refer to https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.6/tools/analyze_model.py
- import argparse
- import os
- import os.path as osp
- import sys
- import paddle
- import numpy as np
- import paddlers
- from paddle.hapi.dynamic_flops import (count_parameters, register_hooks,
- count_io_info)
- from paddle.hapi.static_flops import Table
- _dir = osp.dirname(osp.abspath(__file__))
- sys.path.append(osp.abspath(osp.join(_dir, '../')))
- import custom_model
- import custom_trainer
- def parse_args():
- parser = argparse.ArgumentParser()
- parser.add_argument(
- "--model_dir", default=None, type=str, help="Path of saved model.")
- parser.add_argument(
- "--input_shape",
- nargs='+',
- type=int,
- default=[1, 3, 256, 256],
- help="Shape of each input tensor.")
- return parser.parse_args()
- def analyze(model, inputs, custom_ops=None, print_detail=False):
- handler_collection = []
- types_collection = set()
- if custom_ops is None:
- custom_ops = {}
- def add_hooks(m):
- if len(list(m.children())) > 0:
- return
- m.register_buffer('total_ops', paddle.zeros([1], dtype='int64'))
- m.register_buffer('total_params', paddle.zeros([1], dtype='int64'))
- m_type = type(m)
- flops_fn = None
- if m_type in custom_ops:
- flops_fn = custom_ops[m_type]
- if m_type not in types_collection:
- print("Customized function has been applied to {}".format(
- m_type))
- elif m_type in register_hooks:
- flops_fn = register_hooks[m_type]
- if m_type not in types_collection:
- print("{}'s FLOPs metric has been counted".format(m_type))
- else:
- if m_type not in types_collection:
- print(
- "Cannot find suitable counting function for {}. Treat it as zero FLOPs."
- .format(m_type))
- if flops_fn is not None:
- flops_handler = m.register_forward_post_hook(flops_fn)
- handler_collection.append(flops_handler)
- params_handler = m.register_forward_post_hook(count_parameters)
- io_handler = m.register_forward_post_hook(count_io_info)
- handler_collection.append(params_handler)
- handler_collection.append(io_handler)
- types_collection.add(m_type)
- training = model.training
- model.eval()
- model.apply(add_hooks)
- with paddle.framework.no_grad():
- model(*inputs)
- total_ops = 0
- total_params = 0
- for m in model.sublayers():
- if len(list(m.children())) > 0:
- continue
- if set(['total_ops', 'total_params', 'input_shape',
- 'output_shape']).issubset(set(list(m._buffers.keys()))):
- total_ops += m.total_ops
- total_params += m.total_params
- if training:
- model.train()
- for handler in handler_collection:
- handler.remove()
- table = Table(
- ["Layer Name", "Input Shape", "Output Shape", "Params(M)", "FLOPs(G)"])
- for n, m in model.named_sublayers():
- if len(list(m.children())) > 0:
- continue
- if set(['total_ops', 'total_params', 'input_shape',
- 'output_shape']).issubset(set(list(m._buffers.keys()))):
- table.add_row([
- m.full_name(), list(m.input_shape.numpy()),
- list(m.output_shape.numpy()),
- round(float(m.total_params / 1e6), 3),
- round(float(m.total_ops / 1e9), 3)
- ])
- m._buffers.pop("total_ops")
- m._buffers.pop("total_params")
- m._buffers.pop('input_shape')
- m._buffers.pop('output_shape')
- if print_detail:
- table.print_table()
- print('Total FLOPs: {}G Total Params: {}M'.format(
- round(float(total_ops / 1e9), 3), round(float(total_params / 1e6), 3)))
- return int(total_ops)
- if __name__ == '__main__':
- args = parse_args()
- # Enforce the use of CPU
- paddle.set_device('cpu')
- model = paddlers.tasks.load_model(args.model_dir)
- net = model.net
- # Construct bi-temporal inputs
- inputs = [paddle.randn(args.input_shape), paddle.randn(args.input_shape)]
- analyze(model.net, inputs)
|