json_Split.py 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111
  1. # -*- coding: utf-8 -*-
  2. # @File : json_split.py
  3. # @Author : zhaoHL
  4. # @Contact : huilin16@qq.com
  5. # @Time Create First: 2021/8/1 10:25
  6. # @Contributor : zhaoHL
  7. # @Time Modify Last : 2021/8/1 10:25
  8. '''
  9. @File Description:
  10. # json数据集划分,可以通过val_split_rate、val_split_num控制划分比例或个数, keep_val_inTrain可以设定是否在train中保留val相关信息
  11. !python ./json_split.py \
  12. --json_all_path=./input/instances_val2017.json \
  13. --json_train_path=./output/instances_val2017_split1.json \
  14. --json_val_path=./output/instances_val2017_split2.json
  15. '''
  16. import json
  17. import argparse
  18. import pandas as pd
  19. def get_annno(df_img_split, df_anno):
  20. df_merge = pd.merge(df_img_split, df_anno, on="image_id")
  21. df_anno_split = df_merge[df_anno.columns.to_list()]
  22. df_anno_split = df_anno_split.sort_values(by='id')
  23. return df_anno_split
  24. def js_split(js_all_path, js_train_path, js_val_path, val_split_rate, val_split_num, keep_val_inTrain,
  25. image_keyname, anno_keyname):
  26. print('Split'.center(100,'-'))
  27. print()
  28. print('json read...\n')
  29. with open(js_all_path, 'r') as load_f:
  30. data = json.load(load_f)
  31. df_anno = pd.DataFrame(data[anno_keyname])
  32. df_img = pd.DataFrame(data[image_keyname])
  33. df_img = df_img.rename(columns={"id": "image_id"})
  34. df_img = df_img.sample(frac=1, random_state=0)
  35. if val_split_num is None:
  36. val_split_num = int(val_split_rate*len(df_img))
  37. if keep_val_inTrain:
  38. df_img_train = df_img
  39. df_img_val = df_img[: val_split_num]
  40. df_anno_train = df_anno
  41. df_anno_val = get_annno(df_img_val, df_anno)
  42. else:
  43. df_img_train = df_img[val_split_num:]
  44. df_img_val = df_img[: val_split_num]
  45. df_anno_train = get_annno(df_img_train, df_anno)
  46. df_anno_val = get_annno(df_img_val, df_anno)
  47. df_img_train = df_img_train.rename(columns={"image_id": "id"}).sort_values(by='id')
  48. df_img_val =df_img_val.rename(columns={"image_id": "id"}).sort_values(by='id')
  49. data[image_keyname] = json.loads(df_img_train.to_json(orient='records'))
  50. data[anno_keyname] = json.loads(df_anno_train.to_json(orient='records'))
  51. str_json = json.dumps(data, ensure_ascii=False)
  52. with open(js_train_path, 'w', encoding='utf-8') as file_obj:
  53. file_obj.write(str_json)
  54. data[image_keyname] = json.loads(df_img_val.to_json(orient='records'))
  55. data[anno_keyname] = json.loads(df_anno_val.to_json(orient='records'))
  56. str_json = json.dumps(data, ensure_ascii=False)
  57. with open(js_val_path, 'w', encoding='utf-8') as file_obj:
  58. file_obj.write(str_json)
  59. print('image total %d, train %d, val %d'%(len(df_img), len(df_img_train), len(df_img_val)))
  60. print('anno total %d, train %d, val %d'%(len(df_anno), len(df_anno_train), len(df_anno_val)))
  61. return df_img
  62. def get_args():
  63. parser = argparse.ArgumentParser(description='Json Merge')
  64. # parameters
  65. parser.add_argument('--json_all_path', type=str,
  66. help='json path to split')
  67. parser.add_argument('--json_train_path', type=str,
  68. help='json path to save the split result -- train part')
  69. parser.add_argument('--json_val_path', type=str,
  70. help='json path to save the split result -- val part')
  71. parser.add_argument('--val_split_rate', type=float, default=0.1,
  72. help='val image number rate in total image, default is 0.1; if val_split_num is set, val_split_rate will not work')
  73. parser.add_argument('--val_split_num', type=int, default=None,
  74. help='val image number in total image, default is None; if val_split_num is set, val_split_rate will not work')
  75. parser.add_argument('--keep_val_inTrain', type=bool, default=False,
  76. help='if true, val part will be in train as well; which means that the content of json_train_path is the same as the content of json_all_path')
  77. parser.add_argument('--image_keyname', type=str, default='images',
  78. help='image key name in json, default images')
  79. parser.add_argument('--anno_keyname', type=str, default='annotations',
  80. help='annotation key name in json, default annotations')
  81. parser.add_argument('-Args_show', '--Args_show', type=bool, default=True,
  82. help='Args_show(default: True), if True, show args info')
  83. args = parser.parse_args()
  84. if args.Args_show:
  85. print('Args'.center(100,'-'))
  86. for k, v in vars(args).items():
  87. print('%s = %s' % (k, v))
  88. print()
  89. return args
  90. if __name__ == '__main__':
  91. args = get_args()
  92. js_split(args.json_all_path,args.json_train_path,args.json_val_path, args.val_split_rate, args.val_split_num,
  93. args.keep_val_inTrain, args.image_keyname, args.anno_keyname)