123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- '''
- @File Description:
- # json文件annotations信息,生成统计结果csv,对象框shape、对象看shape比例、对象框起始位置、对象结束位置、对象结束位置、对象类别、单个图像对象数量的分布
- python ./coco_tools/json_AnnoSta.py \
- --json_path=./annotations/instances_val2017.json \
- --csv_path=./anno_sta/annos.csv \
- --png_shape_path=./anno_sta/annos_shape.png \
- --png_shapeRate_path=./anno_sta/annos_shapeRate.png \
- --png_pos_path=./anno_sta/annos_pos.png \
- --png_posEnd_path=./anno_sta/annos_posEnd.png \
- --png_cat_path=./anno_sta/annos_cat.png \
- --png_objNum_path=./anno_sta/annos_objNum.png \
- --get_relative=True
- '''
- import os
- import json
- import argparse
- import numpy as np
- import pandas as pd
- import seaborn as sns
- import matplotlib.pyplot as plt
- shp_rate_bins = [
- 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5,
- 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.4, 2.6, 3, 3.5, 4, 5
- ]
- def check_dir(check_path, show=True):
- if os.path.isdir(check_path):
- check_directory = check_path
- else:
- check_directory = os.path.dirname(check_path)
- if not os.path.exists(check_directory):
- os.makedirs(check_directory)
- if show:
- print('make dir:', check_directory)
- def js_anno_sta(js_path, csv_path, png_shape_path, png_shapeRate_path,
- png_pos_path, png_posEnd_path, png_cat_path, png_objNum_path,
- get_relative, image_keyname, anno_keyname):
- print('json read...\n')
- with open(js_path, 'r') as load_f:
- data = json.load(load_f)
- df_img = pd.DataFrame(data[image_keyname])
- sns.jointplot('height', 'width', data=df_img, kind='hex')
- plt.close()
- df_img = df_img.rename(columns={
- "id": "image_id",
- "height": "image_height",
- "width": "image_width"
- })
- df_anno = pd.DataFrame(data[anno_keyname])
- df_anno[['pox_x', 'pox_y', 'width', 'height']] = pd.DataFrame(df_anno[
- 'bbox'].values.tolist())
- df_anno['width'] = df_anno['width'].astype(int)
- df_anno['height'] = df_anno['height'].astype(int)
- df_merge = pd.merge(df_img, df_anno, on="image_id")
- if png_shape_path is not None:
- check_dir(png_shape_path)
- sns.jointplot('height', 'width', data=df_merge, kind='hex')
- plt.savefig(png_shape_path)
- plt.close()
- print('png save to', png_shape_path)
- if get_relative:
- png_shapeR_path = png_shape_path.replace('.png', '_Relative.png')
- df_merge['heightR'] = df_merge['height'] / df_merge['image_height']
- df_merge['widthR'] = df_merge['width'] / df_merge['image_width']
- sns.jointplot('heightR', 'widthR', data=df_merge, kind='hex')
- plt.savefig(png_shapeR_path)
- plt.close()
- print('png save to', png_shapeR_path)
- if png_shapeRate_path is not None:
- check_dir(png_shapeRate_path)
- plt.figure(figsize=(12, 8))
- df_merge['shape_rate'] = (df_merge['width'] /
- df_merge['height']).round(1)
- df_merge['shape_rate'].value_counts(
- sort=False, bins=shp_rate_bins).plot(
- kind='bar', title='images shape rate')
- plt.xticks(rotation=20)
- plt.savefig(png_shapeRate_path)
- plt.close()
- print('png save to', png_shapeRate_path)
- if png_pos_path is not None:
- check_dir(png_pos_path)
- sns.jointplot('pox_y', 'pox_x', data=df_merge, kind='hex')
- plt.savefig(png_pos_path)
- plt.close()
- print('png save to', png_pos_path)
- if get_relative:
- png_posR_path = png_pos_path.replace('.png', '_Relative.png')
- df_merge['pox_yR'] = df_merge['pox_y'] / df_merge['image_height']
- df_merge['pox_xR'] = df_merge['pox_x'] / df_merge['image_width']
- sns.jointplot('pox_yR', 'pox_xR', data=df_merge, kind='hex')
- plt.savefig(png_posR_path)
- plt.close()
- print('png save to', png_posR_path)
- if png_posEnd_path is not None:
- check_dir(png_posEnd_path)
- df_merge['pox_y_end'] = df_merge['pox_y'] + df_merge['height']
- df_merge['pox_x_end'] = df_merge['pox_x'] + df_merge['width']
- sns.jointplot('pox_y_end', 'pox_x_end', data=df_merge, kind='hex')
- plt.savefig(png_posEnd_path)
- plt.close()
- print('png save to', png_posEnd_path)
- if get_relative:
- png_posEndR_path = png_posEnd_path.replace('.png', '_Relative.png')
- df_merge['pox_y_endR'] = df_merge['pox_y_end'] / df_merge[
- 'image_height']
- df_merge['pox_x_endR'] = df_merge['pox_x_end'] / df_merge[
- 'image_width']
- sns.jointplot('pox_y_endR', 'pox_x_endR', data=df_merge, kind='hex')
- plt.savefig(png_posEndR_path)
- plt.close()
- print('png save to', png_posEndR_path)
- if png_cat_path is not None:
- check_dir(png_cat_path)
- plt.figure(figsize=(12, 8))
- df_merge['category_id'].value_counts().sort_index().plot(
- kind='bar', title='obj category')
- plt.savefig(png_cat_path)
- plt.close()
- print('png save to', png_cat_path)
- if png_objNum_path is not None:
- check_dir(png_objNum_path)
- plt.figure(figsize=(12, 8))
- df_merge['image_id'].value_counts().value_counts().sort_index().plot(
- kind='bar', title='obj number per image')
- # df_merge['image_id'].value_counts().value_counts(bins=np.linspace(1,31,16)).sort_index().plot(kind='bar', title='obj number per image')
- plt.xticks(rotation=20)
- plt.savefig(png_objNum_path)
- plt.close()
- print('png save to', png_objNum_path)
- if csv_path is not None:
- check_dir(csv_path)
- df_merge.to_csv(csv_path)
- print('csv save to', csv_path)
- def get_args():
- parser = argparse.ArgumentParser(
- description='Json Images Infomation Statistic')
- # parameters
- parser.add_argument(
- '--json_path',
- type=str,
- help='json path to statistic images information')
- parser.add_argument(
- '--csv_path',
- type=str,
- default=None,
- help='csv path to save statistic images information, default None, do not save'
- )
- parser.add_argument(
- '--png_shape_path',
- type=str,
- default=None,
- help='png path to save statistic images shape information, default None, do not save'
- )
- parser.add_argument(
- '--png_shapeRate_path',
- type=str,
- default=None,
- help='png path to save statistic images shape rate information, default None, do not save'
- )
- parser.add_argument(
- '--png_pos_path',
- type=str,
- default=None,
- help='png path to save statistic pos information, default None, do not save'
- )
- parser.add_argument(
- '--png_posEnd_path',
- type=str,
- default=None,
- help='png path to save statistic end pos information, default None, do not save'
- )
- parser.add_argument(
- '--png_cat_path',
- type=str,
- default=None,
- help='png path to save statistic category information, default None, do not save'
- )
- parser.add_argument(
- '--png_objNum_path',
- type=str,
- default=None,
- help='png path to save statistic images object number information, default None, do not save'
- )
- parser.add_argument(
- '--get_relative',
- type=bool,
- default=True,
- help='if True, get relative result')
- parser.add_argument(
- '--image_keyname',
- type=str,
- default='images',
- help='image key name in json, default images')
- parser.add_argument(
- '--anno_keyname',
- type=str,
- default='annotations',
- help='annotation key name in json, default annotations')
- parser.add_argument(
- '-Args_show',
- '--Args_show',
- type=bool,
- default=True,
- help='Args_show(default: True), if True, show args info')
- args = parser.parse_args()
- if args.Args_show:
- print('Args'.center(100, '-'))
- for k, v in vars(args).items():
- print('%s = %s' % (k, v))
- print()
- return args
- if __name__ == '__main__':
- args = get_args()
- js_anno_sta(args.json_path, args.csv_path, args.png_shape_path,
- args.png_shapeRate_path, args.png_pos_path,
- args.png_posEnd_path, args.png_cat_path, args.png_objNum_path,
- args.get_relative, args.image_keyname, args.anno_keyname)
|