test_slider_predict.py 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212
  1. # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import os.path as osp
  15. import tempfile
  16. import paddlers as pdrs
  17. import paddlers.transforms as T
  18. from testing_utils import CommonTest
  19. class _TestSliderPredictNamespace:
  20. class TestSliderPredict(CommonTest):
  21. def test_blocksize_and_overlap_whole(self):
  22. # Original image size (256, 256)
  23. with tempfile.TemporaryDirectory() as td:
  24. # Whole-image inference using predict()
  25. pred_whole = self.model.predict(self.image_path,
  26. self.transforms)
  27. pred_whole = pred_whole['label_map']
  28. # Whole-image inference using slider_predict()
  29. save_dir = osp.join(td, 'pred1')
  30. self.model.slider_predict(self.image_path, save_dir, 256, 0,
  31. self.transforms)
  32. pred1 = T.decode_image(
  33. osp.join(save_dir, self.basename),
  34. read_raw=True,
  35. decode_sar=False)
  36. self.check_output_equal(pred1.shape, pred_whole.shape)
  37. # `block_size` == `overlap`
  38. save_dir = osp.join(td, 'pred2')
  39. with self.assertRaises(ValueError):
  40. self.model.slider_predict(self.image_path, save_dir, 128,
  41. 128, self.transforms)
  42. # `block_size` is a tuple
  43. save_dir = osp.join(td, 'pred3')
  44. self.model.slider_predict(self.image_path, save_dir, (128, 32),
  45. 0, self.transforms)
  46. pred3 = T.decode_image(
  47. osp.join(save_dir, self.basename),
  48. read_raw=True,
  49. decode_sar=False)
  50. self.check_output_equal(pred3.shape, pred_whole.shape)
  51. # `block_size` and `overlap` are both tuples
  52. save_dir = osp.join(td, 'pred4')
  53. self.model.slider_predict(self.image_path, save_dir, (128, 100),
  54. (10, 5), self.transforms)
  55. pred4 = T.decode_image(
  56. osp.join(save_dir, self.basename),
  57. read_raw=True,
  58. decode_sar=False)
  59. self.check_output_equal(pred4.shape, pred_whole.shape)
  60. # `block_size` larger than image size
  61. save_dir = osp.join(td, 'pred5')
  62. with self.assertRaises(ValueError):
  63. self.model.slider_predict(self.image_path, save_dir, 512, 0,
  64. self.transforms)
  65. def test_merge_strategy(self):
  66. with tempfile.TemporaryDirectory() as td:
  67. # Whole-image inference using predict()
  68. pred_whole = self.model.predict(self.image_path,
  69. self.transforms)
  70. pred_whole = pred_whole['label_map']
  71. # 'keep_first'
  72. save_dir = osp.join(td, 'keep_first')
  73. self.model.slider_predict(
  74. self.image_path,
  75. save_dir,
  76. 128,
  77. 64,
  78. self.transforms,
  79. merge_strategy='keep_first')
  80. pred_keepfirst = T.decode_image(
  81. osp.join(save_dir, self.basename),
  82. read_raw=True,
  83. decode_sar=False)
  84. self.check_output_equal(pred_keepfirst.shape, pred_whole.shape)
  85. # 'keep_last'
  86. save_dir = osp.join(td, 'keep_last')
  87. self.model.slider_predict(
  88. self.image_path,
  89. save_dir,
  90. 128,
  91. 64,
  92. self.transforms,
  93. merge_strategy='keep_last')
  94. pred_keeplast = T.decode_image(
  95. osp.join(save_dir, self.basename),
  96. read_raw=True,
  97. decode_sar=False)
  98. self.check_output_equal(pred_keeplast.shape, pred_whole.shape)
  99. # 'accum'
  100. save_dir = osp.join(td, 'accum')
  101. self.model.slider_predict(
  102. self.image_path,
  103. save_dir,
  104. 128,
  105. 64,
  106. self.transforms,
  107. merge_strategy='accum')
  108. pred_accum = T.decode_image(
  109. osp.join(save_dir, self.basename),
  110. read_raw=True,
  111. decode_sar=False)
  112. self.check_output_equal(pred_accum.shape, pred_whole.shape)
  113. def test_geo_info(self):
  114. with tempfile.TemporaryDirectory() as td:
  115. _, geo_info_in = T.decode_image(
  116. self.ref_path, read_geo_info=True)
  117. self.model.slider_predict(self.image_path, td, 128, 0,
  118. self.transforms)
  119. _, geo_info_out = T.decode_image(
  120. osp.join(td, self.basename), read_geo_info=True)
  121. self.assertEqual(geo_info_out['geo_trans'],
  122. geo_info_in['geo_trans'])
  123. self.assertEqual(geo_info_out['geo_proj'],
  124. geo_info_in['geo_proj'])
  125. def test_batch_size(self):
  126. with tempfile.TemporaryDirectory() as td:
  127. # batch_size = 1
  128. save_dir = osp.join(td, 'bs1')
  129. self.model.slider_predict(
  130. self.image_path,
  131. save_dir,
  132. 128,
  133. 64,
  134. self.transforms,
  135. merge_strategy='keep_first',
  136. batch_size=1)
  137. pred_bs1 = T.decode_image(
  138. osp.join(save_dir, self.basename),
  139. read_raw=True,
  140. decode_sar=False)
  141. # batch_size = 4
  142. save_dir = osp.join(td, 'bs4')
  143. self.model.slider_predict(
  144. self.image_path,
  145. save_dir,
  146. 128,
  147. 64,
  148. self.transforms,
  149. merge_strategy='keep_first',
  150. batch_size=4)
  151. pred_bs4 = T.decode_image(
  152. osp.join(save_dir, self.basename),
  153. read_raw=True,
  154. decode_sar=False)
  155. self.check_output_equal(pred_bs4, pred_bs1)
  156. # batch_size = 8
  157. save_dir = osp.join(td, 'bs4')
  158. self.model.slider_predict(
  159. self.image_path,
  160. save_dir,
  161. 128,
  162. 64,
  163. self.transforms,
  164. merge_strategy='keep_first',
  165. batch_size=8)
  166. pred_bs8 = T.decode_image(
  167. osp.join(save_dir, self.basename),
  168. read_raw=True,
  169. decode_sar=False)
  170. self.check_output_equal(pred_bs8, pred_bs1)
  171. class TestSegSliderPredict(_TestSliderPredictNamespace.TestSliderPredict):
  172. def setUp(self):
  173. self.model = pdrs.tasks.seg.UNet(in_channels=10)
  174. self.transforms = T.Compose([
  175. T.DecodeImg(), T.Normalize([0.5] * 10, [0.5] * 10),
  176. T.ArrangeSegmenter('test')
  177. ])
  178. self.image_path = "data/ssst/multispectral.tif"
  179. self.ref_path = self.image_path
  180. self.basename = osp.basename(self.ref_path)
  181. class TestCDSliderPredict(_TestSliderPredictNamespace.TestSliderPredict):
  182. def setUp(self):
  183. self.model = pdrs.tasks.cd.BIT(in_channels=10)
  184. self.transforms = T.Compose([
  185. T.DecodeImg(), T.Normalize([0.5] * 10, [0.5] * 10),
  186. T.ArrangeChangeDetector('test')
  187. ])
  188. self.image_path = ("data/ssmt/multispectral_t1.tif",
  189. "data/ssmt/multispectral_t2.tif")
  190. self.ref_path = self.image_path[0]
  191. self.basename = osp.basename(self.ref_path)