1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556 |
- import os
- import os.path as osp
- import numpy as np
- import argparse
- import paddlers
- from sklearn.decomposition import PCA
- from joblib import dump
- from utils import Raster, save_geotiff, time_it
- @time_it
- def pca_train(img_path, save_dir="output", dim=3):
- raster = Raster(img_path)
- im = raster.getArray()
- n_im = np.reshape(im, (-1, raster.bands))
- pca = PCA(n_components=dim, whiten=True)
- pca_model = pca.fit(n_im)
- if not osp.exists(save_dir):
- os.makedirs(save_dir)
- name = osp.splitext(osp.normpath(img_path).split(os.sep)[-1])[0]
- model_save_path = osp.join(save_dir, (name + "_pca.joblib"))
- image_save_path = osp.join(save_dir, (name + "_pca.tif"))
- dump(pca_model, model_save_path)
- output = pca_model.transform(n_im).reshape(
- (raster.height, raster.width, -1))
- save_geotiff(output, image_save_path, raster.proj, raster.geot)
- print("The output image and the PCA model are saved in {}.".format(
- save_dir))
- if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument("--im_path", type=str, required=True, \
- help="Path of HSIs image.")
- parser.add_argument("--save_dir", type=str, default="output", \
- help="Directory to save PCA params(*.joblib). Default: output.")
- parser.add_argument("--dim", type=int, default=3, \
- help="Dimension to reduce to. Default: 3.")
- args = parser.parse_args()
- pca_train(args.im_path, args.save_dir, args.dim)
|