123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # Refer to
- # https://github.com/GeoZcx/A-deeply-supervised-image-fusion-network-for-change-detection-in-remote-sensing-images .
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle.vision.models import vgg16
- from .layers import Conv1x1, make_norm, ChannelAttention, SpatialAttention
- class DSIFN(nn.Layer):
- """
- The DSIFN implementation based on PaddlePaddle.
- The original article refers to
- C. Zhang, et al., "A deeply supervised image fusion network for change detection in high resolution bi-temporal remote
- sensing images"
- (https://www.sciencedirect.com/science/article/pii/S0924271620301532).
- Note that in this implementation, there is a flexible number of target classes.
- Args:
- num_classes (int): The number of target classes.
- use_dropout (bool, optional): A bool value that indicates whether to use dropout layers. When the model is trained
- on a relatively small dataset, the dropout layers help prevent overfitting. Default: False.
- """
- def __init__(self, num_classes, use_dropout=False):
- super(DSIFN, self).__init__()
- self.encoder1 = self.encoder2 = VGG16FeaturePicker()
- self.sa1 = SpatialAttention()
- self.sa2 = SpatialAttention()
- self.sa3 = SpatialAttention()
- self.sa4 = SpatialAttention()
- self.sa5 = SpatialAttention()
- self.ca1 = ChannelAttention(in_ch=1024)
- self.bn_ca1 = make_norm(1024)
- self.o1_conv1 = conv2d_bn(1024, 512, use_dropout)
- self.o1_conv2 = conv2d_bn(512, 512, use_dropout)
- self.bn_sa1 = make_norm(512)
- self.o1_conv3 = Conv1x1(512, num_classes)
- self.trans_conv1 = nn.Conv2DTranspose(512, 512, kernel_size=2, stride=2)
- self.ca2 = ChannelAttention(in_ch=1536)
- self.bn_ca2 = make_norm(1536)
- self.o2_conv1 = conv2d_bn(1536, 512, use_dropout)
- self.o2_conv2 = conv2d_bn(512, 256, use_dropout)
- self.o2_conv3 = conv2d_bn(256, 256, use_dropout)
- self.bn_sa2 = make_norm(256)
- self.o2_conv4 = Conv1x1(256, num_classes)
- self.trans_conv2 = nn.Conv2DTranspose(256, 256, kernel_size=2, stride=2)
- self.ca3 = ChannelAttention(in_ch=768)
- self.o3_conv1 = conv2d_bn(768, 256, use_dropout)
- self.o3_conv2 = conv2d_bn(256, 128, use_dropout)
- self.o3_conv3 = conv2d_bn(128, 128, use_dropout)
- self.bn_sa3 = make_norm(128)
- self.o3_conv4 = Conv1x1(128, num_classes)
- self.trans_conv3 = nn.Conv2DTranspose(128, 128, kernel_size=2, stride=2)
- self.ca4 = ChannelAttention(in_ch=384)
- self.o4_conv1 = conv2d_bn(384, 128, use_dropout)
- self.o4_conv2 = conv2d_bn(128, 64, use_dropout)
- self.o4_conv3 = conv2d_bn(64, 64, use_dropout)
- self.bn_sa4 = make_norm(64)
- self.o4_conv4 = Conv1x1(64, num_classes)
- self.trans_conv4 = nn.Conv2DTranspose(64, 64, kernel_size=2, stride=2)
- self.ca5 = ChannelAttention(in_ch=192)
- self.o5_conv1 = conv2d_bn(192, 64, use_dropout)
- self.o5_conv2 = conv2d_bn(64, 32, use_dropout)
- self.o5_conv3 = conv2d_bn(32, 16, use_dropout)
- self.bn_sa5 = make_norm(16)
- self.o5_conv4 = Conv1x1(16, num_classes)
- self.init_weight()
- def forward(self, t1, t2):
- # Extract bi-temporal features.
- with paddle.no_grad():
- self.encoder1.eval(), self.encoder2.eval()
- t1_feats = self.encoder1(t1)
- t2_feats = self.encoder2(t2)
- t1_f_l3, t1_f_l8, t1_f_l15, t1_f_l22, t1_f_l29 = t1_feats
- t2_f_l3, t2_f_l8, t2_f_l15, t2_f_l22, t2_f_l29, = t2_feats
- aux_x = []
- # Multi-level decoding
- x = paddle.concat([t1_f_l29, t2_f_l29], axis=1)
- x = self.o1_conv1(x)
- x = self.o1_conv2(x)
- x = self.sa1(x) * x
- x = self.bn_sa1(x)
- if self.training:
- aux_x.append(x)
- x = self.trans_conv1(x)
- x = paddle.concat([x, t1_f_l22, t2_f_l22], axis=1)
- x = self.ca2(x) * x
- x = self.o2_conv1(x)
- x = self.o2_conv2(x)
- x = self.o2_conv3(x)
- x = self.sa2(x) * x
- x = self.bn_sa2(x)
- if self.training:
- aux_x.append(x)
- x = self.trans_conv2(x)
- x = paddle.concat([x, t1_f_l15, t2_f_l15], axis=1)
- x = self.ca3(x) * x
- x = self.o3_conv1(x)
- x = self.o3_conv2(x)
- x = self.o3_conv3(x)
- x = self.sa3(x) * x
- x = self.bn_sa3(x)
- if self.training:
- aux_x.append(x)
- x = self.trans_conv3(x)
- x = paddle.concat([x, t1_f_l8, t2_f_l8], axis=1)
- x = self.ca4(x) * x
- x = self.o4_conv1(x)
- x = self.o4_conv2(x)
- x = self.o4_conv3(x)
- x = self.sa4(x) * x
- x = self.bn_sa4(x)
- if self.training:
- aux_x.append(x)
- x = self.trans_conv4(x)
- x = paddle.concat([x, t1_f_l3, t2_f_l3], axis=1)
- x = self.ca5(x) * x
- x = self.o5_conv1(x)
- x = self.o5_conv2(x)
- x = self.o5_conv3(x)
- x = self.sa5(x) * x
- x = self.bn_sa5(x)
- out5 = self.o5_conv4(x)
- if not self.training:
- return [out5]
- else:
- size = paddle.shape(t1)[2:]
- out1 = F.interpolate(
- self.o1_conv3(aux_x[0]),
- size=size,
- mode='bilinear',
- align_corners=True)
- out2 = F.interpolate(
- self.o2_conv4(aux_x[1]),
- size=size,
- mode='bilinear',
- align_corners=True)
- out3 = F.interpolate(
- self.o3_conv4(aux_x[2]),
- size=size,
- mode='bilinear',
- align_corners=True)
- out4 = F.interpolate(
- self.o4_conv4(aux_x[3]),
- size=size,
- mode='bilinear',
- align_corners=True)
- return [out5, out4, out3, out2, out1]
- def init_weight(self):
- # Do nothing
- pass
- class VGG16FeaturePicker(nn.Layer):
- def __init__(self, indices=(3, 8, 15, 22, 29)):
- super(VGG16FeaturePicker, self).__init__()
- features = list(vgg16(pretrained=True).features)[:30]
- self.features = nn.LayerList(features)
- self.features.eval()
- self.indices = set(indices)
- def forward(self, x):
- picked_feats = []
- for idx, model in enumerate(self.features):
- x = model(x)
- if idx in self.indices:
- picked_feats.append(x)
- return picked_feats
- def conv2d_bn(in_ch, out_ch, with_dropout=True):
- lst = [
- nn.Conv2D(
- in_ch, out_ch, kernel_size=3, stride=1, padding=1),
- nn.PReLU(),
- make_norm(out_ch),
- ]
- if with_dropout:
- lst.append(nn.Dropout(p=0.6))
- return nn.Sequential(*lst)
|