123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from .layers import Conv1x1, MaxPool2x2, make_norm, ChannelAttention
- from .param_init import KaimingInitMixin
- class SNUNet(nn.Layer, KaimingInitMixin):
- """
- The SNUNet implementation based on PaddlePaddle.
- The original article refers to
- S. Fang, et al., "SNUNet-CD: A Densely Connected Siamese Network for Change Detection of VHR Images"
- (https://ieeexplore.ieee.org/document/9355573).
- Note that bilinear interpolation is adopted as the upsampling method, which is different from the paper.
- Args:
- in_channels (int): The number of bands of the input images.
- num_classes (int): The number of target classes.
- width (int, optional): The output channels of the first convolutional layer. Default: 32.
- """
-
- def __init__(self, in_channels, num_classes, width=32):
- super().__init__()
- filters = (width, width*2, width*4, width*8, width*16)
- self.conv0_0 = ConvBlockNested(in_channels, filters[0], filters[0])
- self.conv1_0 = ConvBlockNested(filters[0], filters[1], filters[1])
- self.conv2_0 = ConvBlockNested(filters[1], filters[2], filters[2])
- self.conv3_0 = ConvBlockNested(filters[2], filters[3], filters[3])
- self.conv4_0 = ConvBlockNested(filters[3], filters[4], filters[4])
- self.down1 = MaxPool2x2()
- self.down2 = MaxPool2x2()
- self.down3 = MaxPool2x2()
- self.down4 = MaxPool2x2()
- self.up1_0 = Up(filters[1])
- self.up2_0 = Up(filters[2])
- self.up3_0 = Up(filters[3])
- self.up4_0 = Up(filters[4])
- self.conv0_1 = ConvBlockNested(filters[0]*2+filters[1], filters[0], filters[0])
- self.conv1_1 = ConvBlockNested(filters[1]*2+filters[2], filters[1], filters[1])
- self.conv2_1 = ConvBlockNested(filters[2]*2+filters[3], filters[2], filters[2])
- self.conv3_1 = ConvBlockNested(filters[3]*2+filters[4], filters[3], filters[3])
- self.up1_1 = Up(filters[1])
- self.up2_1 = Up(filters[2])
- self.up3_1 = Up(filters[3])
- self.conv0_2 = ConvBlockNested(filters[0]*3+filters[1], filters[0], filters[0])
- self.conv1_2 = ConvBlockNested(filters[1]*3+filters[2], filters[1], filters[1])
- self.conv2_2 = ConvBlockNested(filters[2]*3+filters[3], filters[2], filters[2])
- self.up1_2 = Up(filters[1])
- self.up2_2 = Up(filters[2])
- self.conv0_3 = ConvBlockNested(filters[0]*4+filters[1], filters[0], filters[0])
- self.conv1_3 = ConvBlockNested(filters[1]*4+filters[2], filters[1], filters[1])
- self.up1_3 = Up(filters[1])
- self.conv0_4 = ConvBlockNested(filters[0]*5+filters[1], filters[0], filters[0])
- self.ca_intra = ChannelAttention(filters[0], ratio=4)
- self.ca_inter = ChannelAttention(filters[0]*4, ratio=16)
- self.conv_out = Conv1x1(filters[0]*4, num_classes)
- self.init_weight()
- def forward(self, t1, t2):
- x0_0_t1 = self.conv0_0(t1)
- x1_0_t1 = self.conv1_0(self.down1(x0_0_t1))
- x2_0_t1 = self.conv2_0(self.down2(x1_0_t1))
- x3_0_t1 = self.conv3_0(self.down3(x2_0_t1))
- x0_0_t2 = self.conv0_0(t2)
- x1_0_t2 = self.conv1_0(self.down1(x0_0_t2))
- x2_0_t2 = self.conv2_0(self.down2(x1_0_t2))
- x3_0_t2 = self.conv3_0(self.down3(x2_0_t2))
- x4_0_t2 = self.conv4_0(self.down4(x3_0_t2))
- x0_1 = self.conv0_1(paddle.concat([x0_0_t1, x0_0_t2, self.up1_0(x1_0_t2)], 1))
- x1_1 = self.conv1_1(paddle.concat([x1_0_t1, x1_0_t2, self.up2_0(x2_0_t2)], 1))
- x0_2 = self.conv0_2(paddle.concat([x0_0_t1, x0_0_t2, x0_1, self.up1_1(x1_1)], 1))
- x2_1 = self.conv2_1(paddle.concat([x2_0_t1, x2_0_t2, self.up3_0(x3_0_t2)], 1))
- x1_2 = self.conv1_2(paddle.concat([x1_0_t1, x1_0_t2, x1_1, self.up2_1(x2_1)], 1))
- x0_3 = self.conv0_3(paddle.concat([x0_0_t1, x0_0_t2, x0_1, x0_2, self.up1_2(x1_2)], 1))
- x3_1 = self.conv3_1(paddle.concat([x3_0_t1, x3_0_t2, self.up4_0(x4_0_t2)], 1))
- x2_2 = self.conv2_2(paddle.concat([x2_0_t1, x2_0_t2, x2_1, self.up3_1(x3_1)], 1))
- x1_3 = self.conv1_3(paddle.concat([x1_0_t1, x1_0_t2, x1_1, x1_2, self.up2_2(x2_2)], 1))
- x0_4 = self.conv0_4(paddle.concat([x0_0_t1, x0_0_t2, x0_1, x0_2, x0_3, self.up1_3(x1_3)], 1))
- out = paddle.concat([x0_1, x0_2, x0_3, x0_4], 1)
- intra = paddle.sum(paddle.stack([x0_1, x0_2, x0_3, x0_4]), axis=0)
- m_intra = self.ca_intra(intra)
- out = self.ca_inter(out) * (out + paddle.tile(m_intra, (1,4,1,1)))
- pred = self.conv_out(out)
- return pred,
- class ConvBlockNested(nn.Layer):
- def __init__(self, in_ch, out_ch, mid_ch):
- super().__init__()
- self.act = nn.ReLU()
- self.conv1 = nn.Conv2D(in_ch, mid_ch, kernel_size=3, padding=1)
- self.bn1 = make_norm(mid_ch)
- self.conv2 = nn.Conv2D(mid_ch, out_ch, kernel_size=3, padding=1)
- self.bn2 = make_norm(out_ch)
- def forward(self, x):
- x = self.conv1(x)
- identity = x
- x = self.bn1(x)
- x = self.act(x)
- x = self.conv2(x)
- x = self.bn2(x)
- output = self.act(x + identity)
- return output
- class Up(nn.Layer):
- def __init__(self, in_ch, use_conv=False):
- super().__init__()
- if use_conv:
- self.up = nn.Conv2DTranspose(in_ch, in_ch, 2, stride=2)
- else:
- self.up = nn.Upsample(scale_factor=2,
- mode='bilinear',
- align_corners=True)
- def forward(self, x):
- x = self.up(x)
- return x
|