run_task.py 4.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119
  1. #!/usr/bin/env python
  2. import os
  3. # Import cv2 and sklearn before paddlers to solve the
  4. # "ImportError: dlopen: cannot load any more object with static TLS" issue.
  5. import cv2
  6. import sklearn
  7. import paddle
  8. import paddlers
  9. from paddlers import transforms as T
  10. import custom_model
  11. import custom_trainer
  12. from config_utils import parse_args, build_objects, CfgNode
  13. def format_cfg(cfg, indent=0):
  14. s = ''
  15. if isinstance(cfg, dict):
  16. for i, (k, v) in enumerate(sorted(cfg.items())):
  17. s += ' ' * indent + str(k) + ': '
  18. if isinstance(v, (dict, list, CfgNode)):
  19. s += '\n' + format_cfg(v, indent=indent + 1)
  20. else:
  21. s += str(v)
  22. if i != len(cfg) - 1:
  23. s += '\n'
  24. elif isinstance(cfg, list):
  25. for i, v in enumerate(cfg):
  26. s += ' ' * indent + '- '
  27. if isinstance(v, (dict, list, CfgNode)):
  28. s += '\n' + format_cfg(v, indent=indent + 1)
  29. else:
  30. s += str(v)
  31. if i != len(cfg) - 1:
  32. s += '\n'
  33. elif isinstance(cfg, CfgNode):
  34. s += ' ' * indent + f"type: {cfg.type}" + '\n'
  35. s += ' ' * indent + f"module: {cfg.module}" + '\n'
  36. s += ' ' * indent + 'args: \n' + format_cfg(cfg.args, indent + 1)
  37. return s
  38. if __name__ == '__main__':
  39. CfgNode.set_context(globals())
  40. cfg = parse_args()
  41. print(format_cfg(cfg))
  42. # Automatically download data
  43. if cfg['download_on']:
  44. paddlers.utils.download_and_decompress(
  45. cfg['download_url'], path=cfg['download_path'])
  46. if cfg['cmd'] == 'train':
  47. if not isinstance(cfg['datasets']['train'].args, dict):
  48. raise ValueError("args of train dataset must be a dict!")
  49. if cfg['datasets']['train'].args.get('transforms', None) is not None:
  50. raise ValueError(
  51. "Found key 'transforms' in args of train dataset and the value is not None."
  52. )
  53. train_transforms = T.Compose(
  54. build_objects(
  55. cfg['transforms']['train'], mod=T))
  56. # Inplace modification
  57. cfg['datasets']['train'].args['transforms'] = train_transforms
  58. train_dataset = build_objects(
  59. cfg['datasets']['train'], mod=paddlers.datasets)
  60. if not isinstance(cfg['datasets']['eval'].args, dict):
  61. raise ValueError("args of eval dataset must be a dict!")
  62. if cfg['datasets']['eval'].args.get('transforms', None) is not None:
  63. raise ValueError(
  64. "Found key 'transforms' in args of eval dataset and the value is not None."
  65. )
  66. eval_transforms = T.Compose(build_objects(cfg['transforms']['eval'], mod=T))
  67. # Inplace modification
  68. cfg['datasets']['eval'].args['transforms'] = eval_transforms
  69. eval_dataset = build_objects(cfg['datasets']['eval'], mod=paddlers.datasets)
  70. model = build_objects(
  71. cfg['model'], mod=getattr(paddlers.tasks, cfg['task']))
  72. if cfg['cmd'] == 'train':
  73. if cfg['optimizer']:
  74. if len(cfg['optimizer'].args) == 0:
  75. cfg['optimizer'].args = {}
  76. if not isinstance(cfg['optimizer'].args, dict):
  77. raise TypeError("args of optimizer must be a dict!")
  78. if cfg['optimizer'].args.get('parameters', None) is not None:
  79. raise ValueError(
  80. "Found key 'parameters' in args of optimizer and the value is not None."
  81. )
  82. cfg['optimizer'].args['parameters'] = model.net.parameters()
  83. optimizer = build_objects(cfg['optimizer'], mod=paddle.optimizer)
  84. else:
  85. optimizer = None
  86. model.train(
  87. num_epochs=cfg['num_epochs'],
  88. train_dataset=train_dataset,
  89. train_batch_size=cfg['train_batch_size'],
  90. eval_dataset=eval_dataset,
  91. optimizer=optimizer,
  92. save_interval_epochs=cfg['save_interval_epochs'],
  93. log_interval_steps=cfg['log_interval_steps'],
  94. save_dir=cfg['save_dir'],
  95. learning_rate=cfg['learning_rate'],
  96. early_stop=cfg['early_stop'],
  97. early_stop_patience=cfg['early_stop_patience'],
  98. use_vdl=cfg['use_vdl'],
  99. resume_checkpoint=cfg['resume_checkpoint'] or None,
  100. **cfg['train'])
  101. elif cfg['cmd'] == 'eval':
  102. state_dict = paddle.load(
  103. os.path.join(cfg['resume_checkpoint'], 'model.pdparams'))
  104. model.net.set_state_dict(state_dict)
  105. res = model.evaluate(eval_dataset)
  106. print(res)