123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- @File Description:
- # json数据集划分,可以通过val_split_rate、val_split_num控制划分比例或个数, keep_val_inTrain可以设定是否在train中保留val相关信息
- python ./coco_tools/json_Split.py \
- --json_all_path=./annotations/instances_val2017.json \
- --json_train_path=./instances_val2017_train.json \
- --json_val_path=./instances_val2017_val.json
- """
- import json
- import argparse
- import pandas as pd
- def get_annno(df_img_split, df_anno):
- df_merge = pd.merge(df_img_split, df_anno, on="image_id")
- df_anno_split = df_merge[df_anno.columns.to_list()]
- df_anno_split = df_anno_split.sort_values(by='id')
- return df_anno_split
- def js_split(js_all_path, js_train_path, js_val_path, val_split_rate,
- val_split_num, keep_val_inTrain, image_keyname, anno_keyname):
- print('Split'.center(100, '-'))
- print()
- print('json read...\n')
- with open(js_all_path, 'r') as load_f:
- data = json.load(load_f)
- df_anno = pd.DataFrame(data[anno_keyname])
- df_img = pd.DataFrame(data[image_keyname])
- df_img = df_img.rename(columns={"id": "image_id"})
- df_img = df_img.sample(frac=1, random_state=0)
- if val_split_num is None:
- val_split_num = int(val_split_rate * len(df_img))
- if keep_val_inTrain:
- df_img_train = df_img
- df_img_val = df_img[:val_split_num]
- df_anno_train = df_anno
- df_anno_val = get_annno(df_img_val, df_anno)
- else:
- df_img_train = df_img[val_split_num:]
- df_img_val = df_img[:val_split_num]
- df_anno_train = get_annno(df_img_train, df_anno)
- df_anno_val = get_annno(df_img_val, df_anno)
- df_img_train = df_img_train.rename(columns={"image_id": "id"}).sort_values(
- by='id')
- df_img_val = df_img_val.rename(columns={"image_id": "id"}).sort_values(
- by='id')
- data[image_keyname] = json.loads(df_img_train.to_json(orient='records'))
- data[anno_keyname] = json.loads(df_anno_train.to_json(orient='records'))
- str_json = json.dumps(data, ensure_ascii=False)
- with open(js_train_path, 'w', encoding='utf-8') as file_obj:
- file_obj.write(str_json)
- data[image_keyname] = json.loads(df_img_val.to_json(orient='records'))
- data[anno_keyname] = json.loads(df_anno_val.to_json(orient='records'))
- str_json = json.dumps(data, ensure_ascii=False)
- with open(js_val_path, 'w', encoding='utf-8') as file_obj:
- file_obj.write(str_json)
- print('image total %d, train %d, val %d' %
- (len(df_img), len(df_img_train), len(df_img_val)))
- print('anno total %d, train %d, val %d' %
- (len(df_anno), len(df_anno_train), len(df_anno_val)))
- return df_img
- def get_args():
- parser = argparse.ArgumentParser(description='Json Merge')
- # Parameters
- parser.add_argument('--json_all_path', type=str, help='json path to split')
- parser.add_argument(
- '--json_train_path',
- type=str,
- help='json path to save the split result -- train part')
- parser.add_argument(
- '--json_val_path',
- type=str,
- help='json path to save the split result -- val part')
- parser.add_argument(
- '--val_split_rate',
- type=float,
- default=0.1,
- help='val image number rate in total image, default is 0.1; if val_split_num is set, val_split_rate will not work'
- )
- parser.add_argument(
- '--val_split_num',
- type=int,
- default=None,
- help='val image number in total image, default is None; if val_split_num is set, val_split_rate will not work'
- )
- parser.add_argument(
- '--keep_val_inTrain',
- type=bool,
- default=False,
- help='if true, val part will be in train as well; which means that the content of json_train_path is the same as the content of json_all_path'
- )
- parser.add_argument(
- '--image_keyname',
- type=str,
- default='images',
- help='image key name in json, default images')
- parser.add_argument(
- '--anno_keyname',
- type=str,
- default='annotations',
- help='annotation key name in json, default annotations')
- parser.add_argument(
- '-Args_show',
- '--Args_show',
- type=bool,
- default=True,
- help='Args_show(default: True), if True, show args info')
- args = parser.parse_args()
- if args.Args_show:
- print('Args'.center(100, '-'))
- for k, v in vars(args).items():
- print('%s = %s' % (k, v))
- print()
- return args
- if __name__ == '__main__':
- args = get_args()
- js_split(args.json_all_path, args.json_train_path, args.json_val_path,
- args.val_split_rate, args.val_split_num, args.keep_val_inTrain,
- args.image_keyname, args.anno_keyname)
|